Skip to main content

Advertisement

Log in

Changes induced by the roots of Erica arborea L. to create a suitable environment in a soil developed from alkaline and fine-textured marine sediments

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

We report on the modifications induced by the roots of Erica arborea L. on a soil derived from alkaline and fine-textured marine sediments.

Methods

Physical, chemical, mineralogical and biochemical properties of bulk soil and of the rhizosphere of Erica were characterised to evaluate its role on soil development.

Results

Once the upper horizons had been decarbonated because of geomorphic and pedogenic processes, Erica colonised the soil and progressively modified it through the activity of roots. In the upper horizons, there was no difference between rhizosphere and bulk soil for pH, organic C and exchangeable Al and H. At depth, pH, organic C and exchangeable Al and H differed between rhizosphere and bulk soil. The weathering reactions induced by the Erica roots caused a relative quartz enrichment in the rhizosphere compared with the bulk soil. In the E, EB and Bw horizons, the microbial community of the rhizosphere appeared better adapted than in the underlying 2Bw horizons, where the rhizospheric microorganisms were poorly adapted as these horizons represented the boundary between acid and sub-alkaline soil environments.

Conclusions

The activity of Erica roots modified soil properties so to produce more favourable conditions for itself and the rhizosphere microflora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allegrezza M, Biondi E, Felici S (2006) A phytosociological analysis of the vegetation of the central Adriatic sector of the Italian peninsula. Hacquetia 5(2):135–175

    Google Scholar 

  • Allison LE (1965) Organic carbon. In: Black CA, Evans DD, Ensminger LE, White JL, Clarck FE (eds) Methods of soil analysis, part 2. Agronomy Monograph, 9. American Society of Agronomy, Madison, pp 1367–1378

    Google Scholar 

  • Anderson T-H, Domsch KH (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Barnhisel RI (1977) Chlorites and hydroxy interlayered vermiculite and smectite. In: Dixon JB, Weed SB, Kittrick JA, Milford MH, White JL (eds) Minerals in soil environments. Soil Science Society of America, Madison, pp 331–356

    Google Scholar 

  • Barnhisel RI, Bertsch PM (1989) Chlorites and hydroxy-interlayered vermiculite and smectite. In: Bigham JM, Dixon JB, Milford MH, Roth CB, Weed SB (eds) Minerals in soil environments, 2nd edition. Soil Science Society of America Book Series, no. 1. Soil Science Society of America, Madison, pp 729–788

    Google Scholar 

  • Binkley D, Richter DD (1987) Nutrient cycles and H+ budgets in forest ecosystems. Adv Ecol Res 16:1–51

    Article  Google Scholar 

  • Breland TA, Bakken LR (1991) Microbial growth and nitrogen immobilisation in the root zone of barley (Hordeum vulgare L.), Italian ryegrass (Lolium multiflorum Lam.) and white clover (Trifolium repens L.). Biol Fertil Soils 12:154–160

    Article  CAS  Google Scholar 

  • Brindley GW (1961) Quantitative analysis of clay mixtures. In: Brown G (ed) The X-ray identification and crystal structures of clay minerals. Mineralogical Society, London, pp 489–516

    Google Scholar 

  • Brindley GW, Brown G (1980) Crystal structures of clay minerals and their identification. Mineralogical Society Monograph No. 5. Mineralogical Society, London

    Google Scholar 

  • Bundy LG, Bremner JM (1972) A simple titrimetric method for determination of inorganic carbon in soils. Soil Sci Soc Am Proc 36:273–275

    Article  CAS  Google Scholar 

  • Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205:181–192

    Article  CAS  Google Scholar 

  • Calvaruso C, Mareschal L, Turpault M-P, Leclerc E (2009) Rapid clay weathering in the rhizosphere of Norway Spruce and Oak in an acid forest ecosystem. Soil Sci Soc Am J 73:331–338

    Article  CAS  Google Scholar 

  • Cardon ZG, Whitbeck JL (eds) (2007) The rhizosphere: an ecological perspective. Elsevier, Burlington

    Google Scholar 

  • Chander K, Brookes PC (1991) Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil. Soil Biol Biochem 23:927–932

    Article  Google Scholar 

  • Colin-Belgrand M, Dambrine E, Bienaimé S, Nys C, Turpault MP (2003) Influence of tree roots on nitrogen mineralization. Scand J For Res 18:260–268

    Google Scholar 

  • Corti G, Agnelli A, Ugolini FC (1997) Release of Al by hydroxy-interlayered vermiculite and hydroxy-interlayered smectite during determination of cation exchange capacity in fine earth and rock fragments fractions. Eur J Soil Sci 48:249–262

    Article  CAS  Google Scholar 

  • Corti G, Agnelli A, Ugolini FC (1999) A modified Kjeldahl procedure for determining strongly fixed NH4 +–N. Eur J Soil Sci 50:523–534

    Article  CAS  Google Scholar 

  • Corti G, Agnelli A, Cuniglio R, Fernández Sanjurjo M, Cocco S (2005) Characteristics of rhizosphere soil from natural and agricultural environments. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier, Amsterdam, pp 57–128

    Chapter  Google Scholar 

  • Courchesne F, Gobran G (1997) Mineralogical variations of bulk and rhizosphere soils from a Norway Spruce stand. Soil Sci Soc Am J 61:1245–1249

    Article  CAS  Google Scholar 

  • Damman AWH (1971) Effect of vegetation changes on the fertility of a Newfoundland forest site. Ecol Monogr 41:253–270

    Article  Google Scholar 

  • De Vries W, Breeuwsma A (1987) The relation between soil acidification and element cycling. Water Air Soil Pollut 35:293–310

    Article  Google Scholar 

  • Deacon JW (2005) Fungal symbiosis. In: Fungal biology, 4th edn. Blackwell, New York. pp. 256–278.

  • Dixon JB, Schulze SG (2002) Soil mineralogy with environmental applications. Number 7 in the Soil Science Society of America Book Series, Soil Science Society of America, Inc, Madison

    Google Scholar 

  • Ehrenfeld JG, Parsons WFJ, Han XG, Parmelee RW, Zhu WX (1997) Live and dead roots in forest soil horizons: contrasting effects on nitrogen dynamics. Ecology 78:348–362

    Google Scholar 

  • Eivazi F, Tabatabai MA (1977) Phosphatases in soils. Soil Biol Biochem 9:167–172

    Article  CAS  Google Scholar 

  • Fageria NK, Stone LF (2006) Physical, chemical, and biological changes in the rhizosphere and nutrient availability. J Plant Nutr 29:1327–1356

    Article  CAS  Google Scholar 

  • Fernández Sanjurjo MJ, Corti G, Certini G, Ugolini FC (2003) Pedogenesis induced by Genista aetnensis (Biv.) DC. on basaltic pyroclastic deposits at different altitudes, Mt. Etna, Italy. Geoderma 115:223–243

    Article  CAS  Google Scholar 

  • Fernández Sanjurjo MJ, Corti G, Agnelli A (2011) Genesis and role of the skeleton water-extractable fines in volcanic soils. Soil Sci Soc Am J 75:1019–1031

    Article  CAS  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  PubMed  CAS  Google Scholar 

  • Finlay RD, Rosling A (2006) Integrated nutrient cycles in forest ecosystems, the role of ectomycorrhizal fungi. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge, pp 28–50

    Chapter  Google Scholar 

  • Fujii K, Funakawa S, Hayakawa C, Sukartiningsih, Kosaki T (2008) Quantification of proton budgets in soils of croplands and adjacent forest in Thailand and Indonesia. Plant Soil 316:241–255

    Article  CAS  Google Scholar 

  • Gahoonie TS, Raza S, Nielsen NE (1994) Phosphorus depletion in the rhizosphere as influenced by soil moisture. Plant Soil 159:213–218

    Article  Google Scholar 

  • Gobran GR, Clegg S (1996) A conceptual model for nutrient availability in the mineral soil-root system. Can J Soil Sci 76:125–131

    Article  Google Scholar 

  • Gobran GR, Clegg S, Courchesne F (1998) Rhizospheric processes influencing the biogeochemistry of forest ecosystems. Biogeochemistry 42:107–120

    Article  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Griffiths RP, Caldwell BA, Baham JE (1992) Soil solution chemistry of ectomycorrhizal mat soils. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CABI, Wallingford, pp 380–381

    Google Scholar 

  • Grubb PJ, Green HE, Merrifield RCJ (1969) The ecology of chalkheath: its relevance to the calcicole–calcifuge and soil acidification problems. J Ecol 57:175–212

    Article  Google Scholar 

  • Haynes RJ (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264

    Article  CAS  Google Scholar 

  • Higashi S (1982) Tobelite, a new ammonium dioctahedral mica. Mineral J 11:138–146

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gruünduüngung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-induced pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW (2005) Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol 168:293–303

    Article  PubMed  CAS  Google Scholar 

  • Hsu PH (1989) Aluminium hydroxides and oxyhydroxides. In: Bigham JM, Dixon JB, Milford MH, Roth CB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America Book Series, no. 1, 2nd edn. Soil Science Society of America, Madison, pp 331–378

    Google Scholar 

  • Isermeyer H (1952) Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Z Pflanzenernähr Bodenkd 56:26–38

    Article  CAS  Google Scholar 

  • Jackson ML (1956) Soil chemical analysis—advanced course. Department of Soils, University of Wisconsin, Madison

    Google Scholar 

  • Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136

    Article  Google Scholar 

  • Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13:324–333

    Article  Google Scholar 

  • Joner EJ, van Aarle IM, Vosatka M (2000) Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: a review. Plant Soil 226:199–210

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 32:5–33

    Article  CAS  Google Scholar 

  • Jordan NR, Larson DL, Huerd SC (2008) Soil modification by invasive plants: effect on native and invasive species of mixed-grass prairies. Biol Invasion 10:177–190

    Article  Google Scholar 

  • Juster TC, Brown PE, Bailey SW (1987) NH4-bearing illite in very low grade metamorphic rocks associated with coal, north-eastern Pennsylvania. Am Mineral 72:555–565

    CAS  Google Scholar 

  • Kerley SJ, Read DJ (1997) The biology of mycorrhiza in the Ericaceae: XIX. Fungal mycelium as a nitrogen source for the ericoid mycorrhizal fungus Hymenoscyphus ericae and its host plants. New Phytol 136:691–701

    Article  Google Scholar 

  • Kuikman PJ, Jansen AG, Van Veen JA, Zehender JB (1990) Protozoan predation and the turnover of soil organic carbon and nitrogen in the presence of plants. Biol Fertil Soils 10:22–28

    CAS  Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci 165:382–396

    Article  CAS  Google Scholar 

  • Lavahun MFE, Joergensen RG, Meyer B (1996) Activity and biomass of soil microorganisms at different depths. Biol Fertil Soils 23:38–42

    Article  Google Scholar 

  • Lavkulich LM, Wiens JH (1970) Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effect on selected mineral constituents. Soil Sci Soc Am J 34:755–758

    Article  CAS  Google Scholar 

  • Lawton JH, Jones CG (1995) Linking species and ecosystems: organisms as ecosystem engineers. In: Jones CG, Lawton JH (eds) Linking species and ecosystems. Chapman & Hall, New York, pp 141–150

    Chapter  Google Scholar 

  • Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read DJ (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Levia DF Jr, Frost EE (2006) Variability of throughfall volume and solute inputs in wooded ecosystems. Prog Phys Geogr 30:605–632

    Article  Google Scholar 

  • Liljeroth E, Van Veen JA, Miller HJ (1990) Assimilate translocation to the rhizosphere of two wheat lines and subsequent utilisation by rhizosphere microorganisms at two soil nitrogen concentrations. Soil Biol Biochem 22:1015–1021

    Article  CAS  Google Scholar 

  • Lundström US, van Breemen N, Bain D (2000) The podzolization process. A review. Geoderma 94:91–107

    Article  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41:383–390

    Article  PubMed  CAS  Google Scholar 

  • Mallik AU (1995) Conversion of temperate forests into heaths: role of ecosystem disturbance and ericaceous plants. Environ Manag 19:675–684

    Article  Google Scholar 

  • Marschner H (1992) Nutrient dynamics of the soil–root interface (rhizosphere). In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CABI, Wallingford, pp 3–12

    Google Scholar 

  • Materechera TJ, Dexter AR, Alston AM (1992) Formation of aggregates by plant roots in homogenized soils. Plant Soil 142:69–79

    Google Scholar 

  • Myers MD, Leake JR (1996) Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen source by Vaccinium macrocarpon. New Phytol 132:445–451

    Article  CAS  Google Scholar 

  • Nanni T (1997) Idrogeologia della pianura alluvionale del fiume Musone. In: Nanni, T. (Eds), Il bacino del fiume Musone—Geologia, geomorfologia e idrogeologia. Grafiche Scarponi di Osimo (AN), p 137–155

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Monographs in population biology, vol. 37. Princeton University Press, Princeton

  • Ojeda F, Arroyo J, Maranon T (2000) Ecological distribution of four co-occurring Mediterranean heath species. Ecography 23:148–159

    Article  Google Scholar 

  • Oliver EGH (1991) The ericoideae (Ericaceae)—a review. Contrib Bolus Herb 13:158–208

    Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dept. Agric. Circ. 939, Washington

    Google Scholar 

  • Onofri A (2007) Routine statistical analyses of field experiments by using an Excel extension. In: Proceedings 6th National Conference of the Italian Biometric Society: "La statistica nelle scienze della vita e dell’ambiente", Pisa, 20–22 June 2007. pp. 93–96.

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133

    Article  Google Scholar 

  • Protz R (1982) Development of podzolic soils in the Hudson and James Bay, Lowlands, Ontario. Nat Can 109:501–510

    CAS  Google Scholar 

  • Protz R, Ross GJ, Martini IP, Terasme J (1984) Rate of Podzolic soil formation near Hudson Bay, Ontario. Can J Soil Sci 64:795–810

    Article  Google Scholar 

  • Read DJ (1984) Interactions between ericaceous plants and their competitors with special reference to soil toxicity. Asp Appl Biol 5:195–209

    Google Scholar 

  • Rengel Z, Romheld V (2000) Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency. Plant Soil 222:25–34

    Article  CAS  Google Scholar 

  • Rich CI (1968) Hydroxy interlayers in expansible layer silicates. Clays Clay Miner 16:15–30

    Article  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Management of the soil biota in sustainable farming systems. CSIRO Publishing, Melbourne, pp 50–62

    Google Scholar 

  • Richardson AE, George TS, Hens M, Simpson RJ (2005) Utilization of soil organic phosphorus by higher plants. In: Turner BL, Frossard E, Baldwin DS (eds) Organic phosphorus in the environment. CABI, Wallingford, pp 165–184

    Chapter  Google Scholar 

  • Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 32:305–339

    Article  CAS  Google Scholar 

  • Richter DB, Oh N-H, Fimmen R, Jackson J (2007) The rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Elsevier, Burlington, pp 179–200

    Google Scholar 

  • Romheld V, Awad F (2000) Significance of roots exudates in acquisition of heavy metals from a contaminated calcareous soil by graminaceous species. J Plant Nutr 23:1857–1866

    Article  CAS  Google Scholar 

  • Schoeneberger PJ, Wysoki DA, Benham EC, Broderson WD (1998) Field book for describing and sampling soils. Natural Resources Conservation Service, USDA, National Soil Survey Center, Lincoln

    Google Scholar 

  • Sims JT (1996) Lime requirement. In: Sparks DL (ed) Methods of soil analysis: chemical methods. Part 3. Soil Science Society of America, Inc, Madison, pp 491–515

    Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Skoog D, West D (1987) Analytical chemistry: an introduction, 2nd edn. Saunders, Philadelphia

    Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. United States Department of Agriculture & Natural Resources Conservation Service, Washington, DC

    Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle GS, Bottomley PS, Bezdicek D, Smith S, Tabatabai MA, Wollum A (eds) Methods of soil analysis: Part. 2. Microbiological and biochemical properties of soils. Soil Science Society of America, Madison, pp 775–833

    Google Scholar 

  • Traoré O, Groleau-Renaud V, Plantureu S, Tubeileh A, Boeuf-Tremblay V (2000) Effect of root mucilage and modelled root exudates on soil structure. Eur J Soil Sci 51:575–581

    Google Scholar 

  • Turpault MP, Utérano C, Boudot JP, Ranger J (2005) Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry. Plant Soil 275:327–336

    Article  CAS  Google Scholar 

  • Turpault MP, Gobran GR, Bonnaud P (2007) Temporal variations of rhizosphere and bulk soil chemistry in a Douglas fir stand. Geoderma 137:490–496

    Article  CAS  Google Scholar 

  • Ugolini FC, Edmonds RL (1983) Soil biology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy, vol I. Elsevier, Amsterdam, pp 193–231

    Chapter  Google Scholar 

  • Ulrich B (1989) Effects of acidic precipitation on forest ecosystems. In: Adriano DC, Johnson AH (eds) Acidic precipitation: biological and ecological effects, vol 2. Springer, New York, pp 189–262

    Chapter  Google Scholar 

  • Uren NC (1993) Mucilage secretion and its interaction with soil, and contact reduction. Plant Soil 155(156):79–82

    Article  Google Scholar 

  • van Breemen N, Finzi AC (1998) Plant–soil interactions: ecological aspects and evolutionary implications. Biogeochemistry 42:1–19

    Article  Google Scholar 

  • van Breemen N, Mulder J, Driscoll CT (1983) Acidification and alkalinization of soil. Plant Soil 75:283–308

    Article  Google Scholar 

  • van Breemen N, Driscoll CT, Mulder J (1984) Acidic deposition and internal proton sources in acidification of soils and waters. Nature 307:599–604

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Walley WR, Riseley B, Leeds-Harrison P-B, Bird NRA, Leech PK, Adderly WP (2005) Structural differences between bulk and rhizosphere soil. Eur J Soil Sci 56:353–360

    Article  Google Scholar 

  • Wang ZY, Göttlein A, Bartonek G (2001) Effects of growing roots of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica L.) on rhizosphere soil solution chemistry. J Plant Nutr Soil Sci 164:35–41

    Article  CAS  Google Scholar 

  • Yamamoto T, Nakahira M (1966) Ammonium ions in sericites. Am Mineral 51:1775–1778

    CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zhang JL, George E (2009) Rhizosphere effects on ion concentrations near different root zone of Norway spruce (Picea abies (L.) Karst.) and root types of Douglas-fir (Pseudotsuga menziesii L.) seedlings. Plant Soil 322:209–218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank François Courchesne for his contribution during reading of the manuscript of this paper. We also thank M. Allegrezza and C. Urbinati for helpful information on E. arborea distribution and C. Casucci for his valuable assistance in phosphatase analysis. This work was supported by project PRIN No. 2002078384 of the Ministero Italiano dell’Istruzione, dell’Università e della Ricerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Agnelli.

Additional information

Responsible Editor: Hans Lambers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cocco, S., Agnelli, A., Gobran, G.R. et al. Changes induced by the roots of Erica arborea L. to create a suitable environment in a soil developed from alkaline and fine-textured marine sediments. Plant Soil 368, 297–313 (2013). https://doi.org/10.1007/s11104-012-1501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1501-3

Keywords

Navigation