Skip to main content
Log in

Root system development of Lotus corniculatus L. in calcareous sands with embedded finer-textured fragments in an initial soil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

In post mining landscapes as in the Lusatian region (Brandenburg, Germany), Pleistocene coarse-textured, sandy sediments are used for soil rehabilitation and land reclamation. The homogeneously-appearing initial soils are characterized by finer-textured soil clumps (fragments) of different sizes that are embedded in a sandy matrix. These soils with typical local-scale heterogeneity may serve as a model for studying how spatially-distributed soil fragments may be utilized by pioneering plant species. The aim of this study was to gain insight into the physical and chemical properties of sandy matrix and fragments that could possibly explain why embedded fragment may act as hot spots for root growth.

Methods

In 2009, three soil monoliths of dimension 50 cm × 50 cm × 50 cm that were exclusively vegetated by Lotus corniculatus L. planted in 2008 were studied. Each layer of 10 cm was sampled successively using a cubic metal frame with 10 cm edge length (25 samples per layer each with a volume of 1 l). The samples were analyzed for root biomass, root lengths and diameter, and for chemical and physical properties of sandy matrix and fragments.

Results

Bulk density, water contents, total carbon, total nitrogen, and plant available calcium contents were higher for the fragments compared to the sandy matrix. The roots of L. corniculatus were heterogeneously distributed in the monoliths. The root density distributions for the 1 L samples indicated a positive influence of fragments on directed root growth. Fragments embedded in the sandy matrix were found to be strongly penetrated by roots despite their relatively high bulk density. The presence of fragments also led to an increased root biomass in the sandy matrix in the direct vicinity of fragments. Such direct effects on root development were accompanied by more indirect effects by locally-elevated moisture and nutrient contents.

Conclusion

The results suggest that finer-textured fragments embedded in coarser-textured sediments, can have favorable effect on plant and root development during the initial stages of establishment of vegetation cover. The fragments can act as water and nutrient hot spots to improve supply of pioneering plants especially in coarse-textured soil. The existence of small-scale heterogeneities owing to incomplete sediment mixing e.g., in soil reclamation, could be generally important for controlling the speed and direction of early plants-establishment, for instance, in the succession of post-mining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OM:

Organic matter

SOC:

Soil organic carbon

Nt :

Total nitrogen

Ct :

Total carbon

C_CaCO3 :

Carbonate carbon

References

  • Anderson TH, Domsch KH (1989) Ratio of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21:471–479

    Article  Google Scholar 

  • Baumann K, Schneider BU, Marschner P, Hüttl RF (2005) Root distribution and nutrient status of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings growing in a sandy substrate with lignite fragments. Plant Soil 276:347–357

    Article  CAS  Google Scholar 

  • Baumann K, Rumpelt A, Schneider BU, Marschner P, Hüttl RF (2006) Seedling biomass and element content of Pinus sylvestris and Pinus nigra grown in sandy substrates with lignite. Geoderma 136:573–578

    Article  CAS  Google Scholar 

  • Belesky D (1999) Lotus species used in reclamation, renovation and revegetation. CSSA Special publication, No. 28

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. Ecological studies, Vol. 150. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer Verlag, Berlin

    Google Scholar 

  • Bliss KM, Jones RH, Mitchell RJ, Mou PP (2002) Are competitive interactions influenced by spatial nutrient heterogeneity and root foraging behaviour? New Phytol 154:409–417

    Article  Google Scholar 

  • Boldt K, Schneider BU, Fritsch S, Hüttl RF (2012) Influence of root growth of two pioneering plant species on soil development during the initial stage of ecosystem genesis in the Lusatian postmining landscape. Can J Soil Sci 92(1):67–76

    Article  CAS  Google Scholar 

  • Bresinsky A, Körner C, Kadereit JW, Neuhaus G, Sonnewald U (2008) Straßburger lehrbuch der botanik. Spektrum Akademischer Verlag, Heidelberg Berlin, p S. 963

    Google Scholar 

  • Buczko U, Gerke HH (2005) Estimating spatial distributions of hydraulic parameters for a two-scale structured heterogeneous lignitic mine soil. J Hydrol 312(1–4):109–124

    Article  CAS  Google Scholar 

  • Buscot F (2005) What are soils? In: Buscot F, Varma A (eds) Micro-organisms in soils: roles in genesis and functions. Soil biology, volume 3. Springer-Verlag, Berlin, pp 3–17

    Chapter  Google Scholar 

  • Caldwell MM (1994) Expoiting nutrients in fertile soil microsites. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants: ecophysiological processes above-and belowground. Academic, San Diego, pp 325–347

    Chapter  Google Scholar 

  • Campbell BD, Grime JP, Mackey JML (1991) A trade-off between scale and precision in resource foraging. Oecologia 87:532–538

    Article  Google Scholar 

  • Clark JS, Lewis M, Mc Lachlan JS, HilleRisLambers J (2003) Estimating population spread: what can we forecast and how well? Ecology 84:1988–1997

    Google Scholar 

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev 10:41–71

    Article  CAS  Google Scholar 

  • Crick JC, Grime JP (1987) Morphological plasticity and mineral nutrient capture in two herbaceous species of contrastd ecology. New Phytol 107:403–414

    Article  Google Scholar 

  • Dalling JW (2008) Pioneer species. General Ecology - Pioneer species. 2779–2782

  • Diaz P, Borsani O, Monza J (2005) Lotus japonicus related species and their agronomic improtance. In: Marquez AJ (ed) Lotus japonicus handbook. Springer, Netherlands, pp 25–37

    Google Scholar 

  • DIN ISO 10694, Teil 8.1996 (1994) Bodenbeschaffenheit. Bestimmung von organischem Kohlenstoff und Gesamtkohlenstoff nach trockener Verbrennung (Elementaranalyse). Beuth, Berlin

  • Doyle JJ, Luckow MA (2003) Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  PubMed  CAS  Google Scholar 

  • Einsmann JC, Jones RH, Pu M, Mitchell RJ (1999) Nutrient foraging traits in 10 co-occuring plant species of contrasting life forms. J Ecol 87:609–619

    Article  Google Scholar 

  • Escaray FJ, Menendez AB, Garriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuan J, Ruiz OA (2011) Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Sci 182:121–131

    Article  PubMed  Google Scholar 

  • Farley RA, Fitter AH (1999) The response of seven co-occurring woodland herbaceous perennials to localized nutrient rich patches. J Ecol 87:849–859

    Article  Google Scholar 

  • Fenn ME, Baron JS, Allen EB, Rueth HM, Nydick KR, Geiser L, Bowman WD, Sickman JO, Meixner T, Johnson DW, Neitlich P (2003) Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404–420

    Article  Google Scholar 

  • Fransen B, de Kroon H, Berendse F (2001) Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology 82:2534–2564

    Article  Google Scholar 

  • George E, Seith B, Schaeffer C, Marschner H (1997) Responses of Picea, Pinus and Pseudotsuga to heterogeneous nutrient distribution in soil. Tree Physiol 17:39–45

    Article  PubMed  Google Scholar 

  • Gerke HH, Hangen E, Schaaf W, Hüttl RF (2001) Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma 102:255–274

    Article  CAS  Google Scholar 

  • Gerke HH (2006) Exploring preferential flow in forest-reclaimed lignitic mine soil. Adv Geoecol (38): 380–387

  • Gerwin W, Schaaf W, Biemelt D, Fischer A, Winter S, Hüttl RF (2009) The artificial catchment ‘Chicken Creek’ (Lusatia, Germany) - a landscape laboratory for interdisciplinary studies of the initial ecosystem development. Ecol Eng 25:1786–1796. doi:10.1016/j.ecoleng.2009.09.003

    Article  Google Scholar 

  • Gerwin W, Schaaf W, Biemelt D, Elmer M, Mauer T, Schneider A (2010) The artificial catchment ‘Hühnerwasser’(chicken creek): construction and initial properties. Ecosystem development Vol.1. Brandenburg University of Technology, Cottbus

    Google Scholar 

  • Gerwin W, Schaaf W, Biemelt D, Winter S, Fischer A, Veste M, Hüttl RF (2011) Overview and first results of ecological monitoring at the artificial watershed chicken creek (Germany). Phys Chem Earth 36:61–73

    Article  Google Scholar 

  • Hartge H, Horn R (1992) Die physikalische untersuchung von böden, 3rd edn. Ferdinand Enke, Stuttgart, In German

    Google Scholar 

  • Haubold W, Katzur J, Oehme W-D (1998) Das Lausitzer Revier - Bodensubstrate, landwirtschaftliche und forstliche Rekultivierung. Standortkundliche Grundlagen. In: Pflug, W.(Hrsg.), Braunkohlentagebau und Rekultivierung. Landschaftsökologie - Folgenutzung -Naturschutz. Springer-Verlag, Berlin, Heidelberg, pp. 536–558

  • Hodge A (2004) The plastic plant: root response to heterogeneous supplies of nutrients. New Phytol 162:9–24

    Article  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Bot 57(2):401–411

    Article  PubMed  CAS  Google Scholar 

  • Huang B, Eissenstat DM (2000) Root plasticity in exploiting water and nutrient heterogeneity. In: Wilkinsin RE (ed) Plant-environment interactions, 2nd edn. Marcel Dekker, Inc., New York, pp 111–132

    Google Scholar 

  • Hutchings MJ, John EA (2004) The effects of environmental heterogeneity on root growth and root/shoot partitioning. Annals Bot 94:1–8

    Article  Google Scholar 

  • Hüttl RF, Grünewald H, Schneider BU (2002) Production of biomass in an alley-cropping system. 17th WCSS, Thailand, Symposium no. 39 Paper no.1937, 13 pp

  • Kerley SJ, Leach JE, Swain JL, Huyghe C (2000) Investigation into the exploitation of heterogeneous soils by Lupinus albus L. and L. pilosus Murr. and the effect upon plant growth. Plant Soil 222:241–253

    Article  CAS  Google Scholar 

  • Krümmelbein J, Bens O, Raab T, Naeth MA (2012) A history of lignite coal mining and reclamation practices in Lusatia, eastern Germany. Can J Soil Sci 92(1):53–66

    Article  Google Scholar 

  • Kuchenbuch RO, Gerke HH, Buczko U (2009) Spatial distribution of maize roots by complete 3D soil monolith sampling. Plant Soil 315:297–314

    Article  CAS  Google Scholar 

  • Kuhad RC, Kothamasi DM, Tripathi KK, Sighn A (2004) Diversity and functions of soil microflora in development of plants. In: Varma A, Abbot L, Werner D, Hampp R (eds) Plant surface microbiology. Springer- Verlag, Berlin Heidelberg New York, pp 71–91, Chapter 5

    Google Scholar 

  • Lamb EG, Haag JJ, Cahill JF (2004) Patch background contrast and patch density have limited effects on root proliferation and plant performance in Abutilon theophrasti. Funct Ecol 18:836–843

    Article  Google Scholar 

  • Marschner H, Römheld V (1996) Root-induced changes in the availability of micronutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. M. Dekker, New York, pp 557–579

    Google Scholar 

  • McMichael BL, Quisenberry JE (1993) The impact of the soil environment on the growth of root systems. Environ Exp Bot 33(1):53–61

    Article  Google Scholar 

  • Neumann C (1999) Zur Pedogenese pyrit-und kohlehaltiger Kippsubstrate im Lausitzer Braunkohlerevier. Ph.D. Thesis, Cottbusser Schriften zu Bodenschutz und Rekultivierung 8, 138 pp

  • Nii-Annang S, Grünewald H, Freese D, Hüttl RF, Dilly O (2009) Microbial activity, organic C accumulation and 13C abundance in soils under alley cropping systems after 9 years of recultivation of quaternary deposits. Biol Fertil Soils 45:531–538

    Article  CAS  Google Scholar 

  • Nii-Annang S, Rodionov A, Raab T, Bens O, Hüttl RF, Dilly O (2011) Impact of commercial soil additives on microbial activity and carbon isotopic characteristics of recultivated post lignite mine soils. Geomicrobiol J 28:567–573

    Article  CAS  Google Scholar 

  • Nielsen DR, Wendroth O (2003) Spatial and temporal statistics: sampling field soils and their vegetation. Catena Verlag, Reiskirchen, p 398

    Google Scholar 

  • Pflug W (1998) Braunkohletagebau und rekultivierung. Landschaftsökologie, folgenutzung, naturschutz. Springer Verlag, Berlin

    Book  Google Scholar 

  • Rajaniemi TK, Reynolds HL (2004) Root foraging for patchy resources in eight herbaceous plant species. Oecologia 141:519–525

    Article  PubMed  Google Scholar 

  • Robinson D (1994) Tansley review no.73. The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson D, Hodge A, Griffiths BS, Fitter A (1999) Plant root proliferation in nitrogen rich patches confers competitive advantage. Proc R Soc Lond 266:431–435

    Article  Google Scholar 

  • Rumpel C, Kögel-Knabner I (2003) Characterization of organic matter and carbon cycling in rehabilitated lignite-rich mine soils. Water Air Soil Pollut 3:153–166

    Google Scholar 

  • Schaaf W, Gast M, Wilden R, Scherzer J, Blechschmidt R, Hüttl RF (1999) Temporal and spatial development of soil solution chemistry and element budgets in different mine soils of the Lusatian lignite mining area. Plant Soil 213:169–179

    Article  CAS  Google Scholar 

  • Schlichting E, Blume H, Stahr K (1995) Bodenkundliches praktikum. 2. Neubearbeitete auflage. Blackwell Wissenschafts-Verlag, Berlin-Wien

    Google Scholar 

  • Sourkova M, Frouz J, Fettweis U, Bens O, Hüttl RF, Santruckova H (2005) Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma 129:73–80

    Article  CAS  Google Scholar 

  • Smilaureova M, Smilauer P (2002) Morphological response of plant roots to heterogeneity of soil resources. New Phytol 154:703–715

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Taylor HM, Gardner HR (1983) Penetration of cotton seedling taproots as influenced by bulk soil density, moisture content, and strength of soil. Soil Sci 96:153–156

    Article  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13(2):87–115

    Article  Google Scholar 

  • Vourlitis GL, Pasquini S, Zorba G (2007) Plant and soil N response of Southern Californian semi-arid shrublands after 1 year of experimental N deposition. Ecosystems 10:263–279

    Article  CAS  Google Scholar 

  • Wiersum LK (1962) Uptake of nitrogen and phosphorus in relation to soil structure and nutrient mobility. Plant Soil XVI, 1

  • Wijesinghe DK, John EA, Beurskens S, Hutchings MJ (2001) Root system size and prescision in nutrient foraging: responses to spatial pattern of nutrient supply in six herbaceous species. J Ecol 89:972–983

    Article  Google Scholar 

  • Xie G, Steinberger Y (2005) Nitrogen and carbon dynamics under the canopy of sand dune shrubs in a desert ecosystem. Arid land Res Manag 19:147–160

    Article  CAS  Google Scholar 

  • Zaplata M, Fischer A, Winter S (2010) In: Schaaf W, Biemelt D, Hüttl RF (eds) Ecosystem development vol.2, initial development of the artificial catchment ‘chicken Creek’ – monitoring program and survey 2005–2008. Brandenburg University of Technology, Cottbus

    Google Scholar 

Download references

Acknowledgments

The help of S. Fritsch and S. Feichtinger (Soil Protection and Recultivation, Brandenburg University of Technology) in sample preparation is gratefully acknowledged. We also thank R. Müller and E. Müller (Chair of Soil Protection and Recultivation, Brandenburg University of Technology) for carrying out the soil chemical analysis and Renata Hypscher from the Institute for Soil Landscape Research, Leibniz-Centre for Agricultural Landscape Research (ZALF) Müncheberg for soil physical analyses. This study is part of the Transregional Collaborative Research Centre 38 (SFB/TRR 38), which is financially supported by the Deutsche Forschungsgemeinschaft (DFG, Bonn) and the Brandenburg Ministry of Science, Research and Culture (MWFK, Potsdam). We thank Vattenfall Europe Mining AG for providing the research site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja M. Boldt-Burisch.

Additional information

Responsible Editor: Jeffrey Walck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boldt-Burisch, K.M., Gerke, H.H., Nii-Annang, S. et al. Root system development of Lotus corniculatus L. in calcareous sands with embedded finer-textured fragments in an initial soil. Plant Soil 368, 281–296 (2013). https://doi.org/10.1007/s11104-012-1505-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1505-z

Keywords

Navigation