Skip to main content

Advertisement

Log in

Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aim

Symbiotic dinitrogen (N2) fixation is the most important external N source in organic systems. Our objective was to compare symbiotic N2 fixation of clover grown in organically and conventionally cropped grass-clover leys, while taking into account nutrient supply gradients.

Methods

We studied leys of a 30-year-old field experiment over 2 years in order to compare organic and conventional systems at two fertilization levels. Using 15N natural abundance methods, we determined the proportion of N derived from the atmosphere (PNdfa), the amount of Ndfa (ANdfa), and the transfer of clover N to grasses for both red clover (Trifolium pratense L.) and white clover (Trifolium repens L.).

Results

In all treatments and both years, PNdfa was high (83 to 91 %), indicating that the N2 fixation process is not constrained, even not in the strongly nutrient deficient non-fertilized control treatment. Annual ANdfa in harvested clover biomass ranged from 6 to 16 g N m−2. At typical fertilizer input levels, lower sward yield in organic than those in conventional treatments had no effect on ANdfa because of organic treatments had greater clover proportions. In two-year-old leys, on average, 51 % of N taken up by grasses was transferred from clover.

Conclusion

Both, organically and conventionally cropped grass-clover leys profited from symbiotic N2 fixation, with high PNdfa, and important transfer of clover N to grasses, provided sufficient potassium- and phosphorus-availability to sustain clover biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANdfa:

Amount of nitrogen in clover derived from the atmosphere

BIODYN:

Bio-dynamic cropping (with a number 1 or 2 added to indicate low or typical fertilization levels respectively)

BIOORG:

Bio-organic cropping (with a number 1 or 2 added to indicate low or typical fertilization levels respectively)

CONFYM:

Conventional cropping with mineral fertilization and animal manure (with a number 1 or 2 added to indicate low or typical fertilization levels respectively)

CTRLMIN:

Control with mineral fertilization at a typical level

CTRLNON:

Non-fertilized control

DOK:

Long term field experiment comparing bio-Dynamic bio-Organic and conventional (in German Konventionell) cropping systems

GC:

Grass-clover ley (with a number 1 or 2 added to indicate 1- or 2-year-old swards)

PNdfa:

Proportion of nitrogen in clover derived from the atmosphere

PNdfc:

Proportion of nitrogen in grass derived from clover

References

  • Almeida JPF, Hartwig UA, Frehner M, Nösberger J, Lüscher A (2000) Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J Exp Bot 51:1289–1297

    Article  PubMed  CAS  Google Scholar 

  • Bailey JS, Beattie JAM, Kilpatrick DJ (1997a) The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: I. Model establishment. Plant Soil 197:127–135

    Article  CAS  Google Scholar 

  • Bailey JS, Cushnahan A, Beattie JAM (1997b) The diagnosis and recommendation integrated system (DRIS) for diagnosing the nutrient status of grassland swards: II. Model calibration and validation. Plant Soil 197:137–147

    Article  CAS  Google Scholar 

  • Besson J-M, Michel V, Niggli U (1992) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-dynamisch, organisch-biologisch und konventionell: II. Ertrag der Kulturen: Kunstwiesen, 1. und 2. Fruchtfolgeperiode. Schweiz Landw Fo 31:85–107

    Google Scholar 

  • Boller BC, Nösberger J (1987) Symbiotically fixed nitrogen from field-grown white and red clover mixed with ryegrasses at low levels of 15N-fertilization. Plant Soil 104:219–226

    Article  CAS  Google Scholar 

  • Carlsson G, Huss-Danell K (2003) Nitrogen fixation in perennial forage legumes in the field. Plant Soil 253:353–372

    Article  CAS  Google Scholar 

  • Carlsson G, Palmborg C, Huss-Danell K (2006) Discrimination against N-15 in three N-2-fixing Trifolium species as influenced by Rhizobium strain and plant age. Acta Agric Scand Sec B 56:31–38

    CAS  Google Scholar 

  • Carlsson G, Palmborg C, Jumpponen A, Scherer-Lorenzen M, Högberg P, Huss-Danell K (2009) N2 fixation in three perennial Trifolium species in experimental grasslands of varied plant species richness and composition. Plant Ecol 205:87–104

    Article  Google Scholar 

  • Daudin D, Sierra J (2008) Spatial and temporal variation of below-ground N transfer from a leguminous tree to an associated grass in an agroforestry system. Agric Ecosyst Environ 126:275–280

    Article  CAS  Google Scholar 

  • Dawson J, Huggins DR, Jones S (2008) Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crop Res 107:89–101

    Article  Google Scholar 

  • Dirks R, Scheffer H (1930) Der Kohlesäure-bikarbonatauszug und der Wasserauszug als Grundlage zur Ermittlung der Phosphorsäurebedürftigkeit der Böden. Landwirtschaftliche Jahrbücher 71:73–99

    Google Scholar 

  • Douxchamps S, Humbert FL, Van der Hoek R, Mena M, Bernasconi S, Schmidt A, Rao IM, Frossard E, Oberson A (2010) Nitrogen balances in farmers fields under alternative uses of a cover crop legume: a case study from Nicaragua. Nutr Cycl Agroecosyst 88:447–462

    Article  Google Scholar 

  • Dubach M, Russelle MP (1994) Forage legume roots and nodules and their role in nitrogen transfer. Agric J 86:259–266

    Google Scholar 

  • Duru M, Ducrocq H (1997) A nitrogen and phosphorus herbage nutrient index as a tool for assessing the effect of N and P supply on the dry matter yield of permanent pastures. Nutr Cycl Agroecosyst 47:59–69

    Article  Google Scholar 

  • Finn JA, Kirwan L, Connolly J, Sebastia MT, Helgadottir A, Baadshaug OH, Bélanger G, Black A, Brophy C, Collins RP, Čop J, Dalmannsdóttir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Ghesquire A, Golinska B, Golinski P, Grieu P, Gustavsson AM, Höglind M, Huguenin-Elie O, Jørgensen M, Kadžiulienė Ž, Kurki P, Llurba R, Lunnan T, Porqueddu C, Suter M, Thumm U, Lüscher A (2013) Ecosystem function enhanced by combining four functional types of plant species in intensively-managed grassland mixtures: a three-year continental-scale field experiment. J Ecol in press

  • Flisch R, Sinaj S, Charles R, Richner W (2009) Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF) 2009. Agrarforschung 16:1–97

    Google Scholar 

  • Gosling P, Shepherd M (2005) Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105:425–432

    Article  CAS  Google Scholar 

  • Gunst L, Jossi W, Zihlmann U, Mader P, Dubois D (2007) DOK-Versuch: Erträge und Ertragsstabilität 1978 bis 2005. Agrarforschung 14:542–547

    Google Scholar 

  • Gylfadottir T, Helgadottir A, Hogh-Jensen H (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297:93–104

    Article  CAS  Google Scholar 

  • Hansen JP, Vinther FP (2001) Spatial variability of symbiotic N2 fixation in grass-white clover pastures estimated by the 15N isotope dilution method and the natural 15N abundance method. Plant Soil 230:257–266

    Article  CAS  Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspect Plant Ecol Evol Syst 1:92–120

    Article  Google Scholar 

  • Hebeisen T, Lüscher A, Zanetti S, Fischer BU, Hartwig UA, Frehner M, Hendrey GR, Blum H, Nösberger J (1997) Growth response of Trifolium repens L and Lolium perenne L as monocultures and bi-species mixture to free air CO2 enrichment and management. Glob Chang Biol 3:149–160

    Article  Google Scholar 

  • Hellsten A, Huss-Danell K (2001) Interaction effects of nitrogen and phosphorus on nodulation in red clover (Trifolium pratense L.). Acta Agric Scand Sec B 50:135–142

    Google Scholar 

  • Hogh-Jensen H (2003) The effect of potassium deficiency on growth and N-2-fixation in Trifolium repens. Physiol Plant 119:440–449

    Article  CAS  Google Scholar 

  • Hogh-Jensen H, Schjoerring JK (1994) Measurement of biological dinitrogen fixation in grassland: comparison of the enriched 15N dilution and the natural 15N abundance methods at different nitrogen application rates and defoliation frequencies. Plant Soil 166:153–163

    Article  CAS  Google Scholar 

  • Hogh-Jensen H, Schjoerring JK, Soussana JF (2002) The influence of phosphorus deficiency on growth and nitrogen fixation of white clover plants. Ann Bot 90:745–753

    Article  PubMed  CAS  Google Scholar 

  • Huss-Danell K, Chaia E (2005) Use of different plant parts to study N-2 fixation with N-15 techniques in field-grown red clover (Trifolium pratense). Physiol Plant 125:21–30

    Article  CAS  Google Scholar 

  • Jacot KA, Lüscher A, Nösberger J, Hartwig UA (2000) Symbiotic N-2 fixation of various legume species along an altitudinal gradient in the Swiss Alps. Soil Biol Biochem 32:1043–1052

    Article  CAS  Google Scholar 

  • Jossi W, Gunst L, Zihlmann U, Mader P, Dubois D (2009) DOK-Versuch: Erträge bei halber und praxisüblicher Düngung. Agrarforschung 16:296–301

    Google Scholar 

  • Jouany C, Cruz P, Petibon P, Duru M (2004) Diagnosing phosphorus status of natural grassland in the presence of white clover. Eur J Agric 21:273–285

    Article  CAS  Google Scholar 

  • Kirwan L, Lüscher A, Sebastia MT, Finn JA, Collins RP, Porqueddu C, Helgadottir A, Baadshaug OH, Brophy C, Coran C, Dalmannsdottir S, Delgado I, Elgersma A, Fothergill M, Frankow-Lindberg BE, Golinski P, Grieu P, Gustavsson AM, Hoglind M, Huguenin-Elie O, Iliadis C, Jorgensen M, Kadziuliene Z, Karyotis T, Lunnan T, Malengier M, Maltoni S, Meyer V, Nyfeler D, Nykanen-Kurki P, Parente J, Smit HJ, Thumm U, Connolly J (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Ledgard S, Schils R, Eriksen J, Luo J (2009) Environmental impacts of grazed clover/grass pastures. Ir J Agric Food Res 48:209–226

    Google Scholar 

  • Leifeld J, Reiser R, Oberholzer HR (2009) Consequences of conventional versus organic farming on soil carbon: results from a 27-year field experiment. Agric J 101:1204–1218

    CAS  Google Scholar 

  • Liebisch F, Bünemann EK, Huguenin-Elie O, Jeangros B, Frossard E, Oberson A (2013) Plant phosphorus nutrition indicators evaluated in agricultural grasslands managed at different intensities. Eur J Agric 44:67–77

    Article  CAS  Google Scholar 

  • Lüscher A, Finn JA, Connolly J, Sebastia MT, Collins R, Fothergill M, Porqueddu C, Brophy C, Huguenin-Elie O, Kirwan L, Nyfeler D, Helgadottir A (2008) Benefits of sward diversity for agricultural grasslands. Biodiversity 9:29–32

    Article  Google Scholar 

  • Lüscher A, Soussana JF and Huguenin-Elie O (2011) Role and impacts of legumes in grasslands for high productivity and N gain from symbiotic N2 fixation. In: Lemaire G, Hodgson J, Chabbi A (eds) Grassland productivity and ecosystem services. CAP International. Wallingford, UK, pp 101–107

  • Mackay AD, Saggar S, Trolove SN, Lambert MG (1995) Use of an unsorted pasture sample in herbage testing for sulphur, phosphorus, and nitrogen. N Z J Agric Res 38:483–493

    Article  CAS  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • Mäder P, Fliessbach A, Dubois D, Gunst L, Jossi W, Widmer F, Oberson A, Frossard E, Oehl F, Wiemken A, Gattinger A, Niggli U (2006) The DOK experiment (Switzerland). In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long term field experiments in organic farming. Verlag Dr. Köster, Berlin, pp 41–58

    Google Scholar 

  • Mayer J, Buegger F, Jensen ES, Schloter M, Hess J (2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process. Plant Soil 255:541–554

    Article  CAS  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Lüscher A (2009) Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding. J Appl Ecol 46:683–691

    Article  Google Scholar 

  • Nyfeler D, Huguenin-Elie O, Matthias S, Frossard E, Luscher A (2011) Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric Ecosyst Environ 140:155–163

    Article  Google Scholar 

  • Oberson A, Nanzer S, Bosshard C, Dubois D, Mäder P, Frossard E (2007) Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290:69–83

    Article  CAS  Google Scholar 

  • Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mäder P, Roth HR, Frossard E (2002) Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycl Agroecosyst 62:25–35

    Article  CAS  Google Scholar 

  • Øgaard A, Hansen S (2010) Potassium uptake and requirement in organic grassland farming. Nutr Cycl Agroecosyst 87:137–149

    Article  Google Scholar 

  • Peyraud JL, Le Gall A, Lüscher A (2009) Potential food production from forage legume-based-systems in Europe: an overview. Ir J Agric Food Res 48:115–135

    Google Scholar 

  • Pirhofer-Walzl K, Rasmussen J, Hogh-Jensen H, Eriksen J, Soegaard K (2012) Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 350:71–84

    Article  CAS  Google Scholar 

  • Rasmussen J, Eriksen J, Jensen ES, Esbensen KH, Hogh-Jensen H (2007) In situ carbon and nitrogen dynamics in ryegrass-clover mixtures: transfers, deposition and leaching. Soil Biol Biochem 39:804–815

    Article  CAS  Google Scholar 

  • Roscher C, Thein S, Weigelt A, Temperton V, Buchmann N, Schulze E-D (2011) N2 fixation and performance of 12 legume species in a 6-year grassland biodiversity experiment. Plant Soil 341:333–348

    Article  CAS  Google Scholar 

  • Russelle MP, Allan DL, Gourley CJP (1994) Direct assessment of symbiotically fixed nitrogen in the rhizosphere of alfalfa. Plant Soil 159:233–243

    Article  CAS  Google Scholar 

  • Senbayram M, Dixon L, Goulding KWT, Bol R (2008) Long-term influence of manure and mineral nitrogen applications on plant and soil N-15 and C-13 values from the Broadbalk Wheat Experiment. Rap Com Mass Spec 22:1735–1740

    Article  CAS  Google Scholar 

  • Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural abundance. Aust J Plant Physiol 13:699–744

    CAS  Google Scholar 

  • Sierra J, Daudin D, Domenach AM, Nygren P, Desfontaines L (2007) Nitrogen transfer from a legume tree to the associated grass estimated by the isotopic signature of tree root exudates: a comparison of the 15N leaf feeding and natural 15N abundance methods. Eur J Agric 27:178–186

    Article  CAS  Google Scholar 

  • Snoeck D, Zapata F, Domenach AM (2000) Isoptopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100

    CAS  Google Scholar 

  • Soussana JF, Hartwig UA (1996) The effects of elevated CO2 on symbiotic N-2 fixation: a link between the carbon and nitrogen cycles in grassland ecosystems. Plant Soil 187:321–332

    Article  CAS  Google Scholar 

  • Soussana JF, Minchin FR, Macduff JH, Raistrick N, Abberton MT, Michaelson-Yeates TPT (2002) A simple model of feedback regulation for nitrate uptake and N-2 fixation in contrasting phenotypes of white clover. Ann Bot 90:139–147

    Article  PubMed  CAS  Google Scholar 

  • Trannin WS, Urquiaga S, Guerra G, Ibijbijen J, Cadisch G (2000) Interspecies competition and N transfer in a tropical grass-legume mixture. Biol Fertil Soils 32:441–448

    Article  CAS  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N-2 fixation by annual legumes. Field Crop Res 65:211–228

    Article  Google Scholar 

  • Unkovich MJ, Pate JS, Sanford P, Armstrong EL (1994) Potential precision of the d15N natural abundance method in the field estimates of nitrogen fixation by crop and pasture legumes in south-west Australia. Aust J Agric Res 45:119–132

    Article  Google Scholar 

  • Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk PM (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra

    Google Scholar 

  • Vinther FP, Jensen ES (2000) Estimating legume N2 fixation in grass-clover mixtures of a grazed organic cropping system using two 15N methods. Agric Ecosyst Environ 78:139–147

    Article  CAS  Google Scholar 

  • Whitehead DC (2000) Nutrient elements in grassland. Soil-plant-animal relationship. CABI, New York

    Book  Google Scholar 

  • Wichern F, Eberhardt E, Mayer J, Joergensen RG, Muller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48

    Article  CAS  Google Scholar 

  • Zanetti S, Hartwig UA, vanKessel C, Lüscher A, Hebeisen T, Frehner M, Fischer BU, Hendrey GR, Blum H, Nösberger J (1997) Does nitrogen nutrition restrict the CO2 response of fertile grassland lacking legumes? Oecologia 112:17–25

    Article  Google Scholar 

Download references

Acknowledgments

We warmly thank the field staff of ART and FiBL for maintenance of the DOK experiment and Lucie Gunst (ART) for data records. We acknowledge the technical staff of ETH and ART, and student helpers for their support in sampling and sample preparation, Thomas Flura and Irena Jansowa (both ETH) for analytical work, and Myles Stocki (Soil Science Department, University of Saskatchewan, Saskatoon, Canada) for mass spectrometry. Helpful discussion inputs from Andreas Hammelehle (ART) and advice in statistics by Anna Drewek (ETH) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oberson.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberson, A., Frossard, E., Bühlmann, C. et al. Nitrogen fixation and transfer in grass-clover leys under organic and conventional cropping systems. Plant Soil 371, 237–255 (2013). https://doi.org/10.1007/s11104-013-1666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1666-4

Keywords

Navigation