Skip to main content
Log in

Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The aim of this study was to determine Zn/Cd accumulation ability and cellular distribution in Sedum plumbizincicola from a mine area.

Methods

Spatial localization of S, Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn and Cd in frozen-hydrated sections of S. plumbizincicola was quantitatively determined using cryo-micro-PIXE.

Results

The shoots of S. plumbizincicola hyperaccumulated up to 1,470 mg kg−1 of Cd and 14,600 mg kg−1 of Zn (dry weight) in field-grown plants. Micro-PIXE analyse shows that in roots Zn was concentrated in the cortex. In stems Zn was preferentially accumulated in the epidermis (5,090 mg kg−1 wet weight) and in vascular bundles and neighbouring parenchyma cells. Interestingly, some vascular bundles of the stem were depleted in Zn. Taking tissue area into account, 22.1, 46.2 and 31.8 % of total Zn and 17.1, 71.6 and 11.3 % of total Cd in the stem were present in the epidermis, cortex and central cylinder, respectively. In the leaves, 81.3 % of total Cd and 55.2 % of total Zn were distributed in the mesophyll.

Conclusions

The parenchyma cells, e.g. cortex in stem and mesophyll in leaf, play more important roles in Cd storage and detoxification than Zn in S. plumbizincicola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy-metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  CAS  Google Scholar 

  • Belleghem FV, Cuypers A, Semane B, Smeets K, Vangronsveld J, d’Haen J, Valcke R (2007) Subcellular localization of cadmium in roots and leaves of Arabidopsis thaliana. New Phytol 173:495–508

    Article  PubMed  Google Scholar 

  • Broadhurst CL, Bauchan GR, Murphy CA, Tang YT, Pooley C, Davis AP, Chaney RL (2013) Accumulation of zinc and cadmium and localization of zinc in Picris divaricata Vant. Environ Exp Bot 87:1–9

    Article  CAS  Google Scholar 

  • Cao D, Zhang HZ, Wang YD, Zheng LN (2014) Accumulation and distribution characteristics of zinc and cadmium in the hyperaccumulator plant Sedum plumbizincicola. Bull Environ Contam Toxicol 93:171–176

    Article  CAS  PubMed  Google Scholar 

  • Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot Lond 105:1081–1102

    Article  CAS  Google Scholar 

  • Cooperative Research Group on Chinese Soil Taxonomy (2001) Chinese soil taxonomy. Science Press, Beijing

    Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  CAS  PubMed  Google Scholar 

  • Doolittle LR (1986) A semiautomatic algorithm for rutherford backscattering analysis. Nucl Instrum Meth B 15:227–231

    Article  Google Scholar 

  • Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ (2009) Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot 66:317–325

    Article  CAS  Google Scholar 

  • Jiang JP, Wu LH, Li N, Luo YM, Liu L, Zhao QG, Zhang L, Christie P (2010) Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties. Eur J Soil Biol 46:18–26

    Article  CAS  Google Scholar 

  • Kerton M, Newbury HJ, Hand D, Pritchard J (2009) Accumulation of calcium in the centre of leaves of coriander (Coriandrum sativum L.) is due to an uncoupling of water and ion transport. J Exp Bot 60:227–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Küpper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  PubMed Central  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed Central  PubMed  Google Scholar 

  • Li Z, Wu LH, Hu PJ, Luo YM, Christie P (2013) Copper changes the yield and cadmium/zinc accumulation of the cadmium/zinc hyperaccumulator Sedum plumbizincicola. J Hazard Mater 261:319–334

    Google Scholar 

  • Li Z, Wu LH, Luo YM, Christie P (2014) Dynamics of plant metal uptake and metal changes in whole soil and soil particle fractions during repeated phytoextraction. Plant Soil 374:857–869

    Article  CAS  Google Scholar 

  • Liu JG, Leng XM, Wang MX, Zhu ZQ, Dai QH (2011a) Iron plaque formation on roots of different rice cultivars and the relation with lead uptake. Ecotoxicol Environ Saf 74:1304–1309

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Wu LH, Li N, Luo YM, Li SL, Li Z, Han CL, Jiang YG, Christie P (2011b) Rhizosphere concentrations of zinc and cadmium in a metal contaminated soil after repeated phytoextraction by Sedum plumbizincicola. Int J Phytoremediat 13:750–764

    Article  CAS  Google Scholar 

  • Liu YJ, Zhong DX, Li Z, Li SL, Guo FG, Wu LH (2013) Interaction of Zn and Cd on heavy metal phytoextraction efficiency of Sedum plumbizincicola. Soils 45:700–706 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  PubMed  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    Article  CAS  PubMed  Google Scholar 

  • Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2002) Micro-PIXE in plant sciences: present status and perspectives. Nucl Instrum Meth B 189:470–481

    Article  Google Scholar 

  • Ozkutlu F, Ozturk L, Erdem H, McLaughlin M, Cakmak I (2007) Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain. Plant Soil 290:323–331

    Article  CAS  Google Scholar 

  • Prozesky VM, Przybyłowicz WJ, Vanachterbergh E, Churms CL, Pineda CA, Springhorn KA, Pilcher JV, Ryan CG, Kritzinger J, Schmitt H, Swart T (1995) The NAC nuclear microprobe facility. Nucl Instrum Meth B 104:36–42

    Article  CAS  Google Scholar 

  • Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Prozesky VM, Pineda CA (1997) Botanical applications in nuclear microscopy. Nucl Instrum Meth B 130:335–345

    Article  Google Scholar 

  • Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Pineda CA, Churms CL, Springhorn KA, Prozesky VM (1999) Biological applications of the NAC nuclear microprobe. X-Ray Spectrom 28:237–243

    Article  Google Scholar 

  • Ryan CG (2000) Quantitative trace element imaging using PIXE and the nuclear microprobe. Int J Imaging Syst Technol 11:219–230

    Article  Google Scholar 

  • Ryan CG, Jamieson DN (1993) Dynamic analysis: on-line quantitative PIXE microanalysis and its use in overlap-resolved elemental mapping. Nucl Instrum Meth B 77:203–214

    Article  Google Scholar 

  • Ryan CG, Jamieson DN, Churms CL, Pilcher JV (1995) A new method for on-line true-elemental imaging using PIXE and the proton microprobe. Nucl Instrum Meth B 104:157–165

    Article  CAS  Google Scholar 

  • Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Methods of soil analysis. Part 3 - chemical methods. Soil Science Society of America Inc, Madison

    Google Scholar 

  • Storey R, Leigh RA (2004) Processes modulating calcium distribution in citrus leaves. An investigation using x-ray microanalysis with strontium as a tracer. Plant Physiol 136:3838–3848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Yang YE, Labavitch JM, Huang YY, Brown P (2009) Stem and leaf sequestration of zinc at the cellular level in the hyperaccumulator Sedum alfredii. New Phytol 182:116–126

    Article  CAS  PubMed  Google Scholar 

  • Tian SK, Lu LL, Labavitch J, Yang XE, He ZL, Hu HN, Sarangi R, Newville M, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157:1914–1925

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007a) In-vacuum micro-PIXE analysis of biological specimens in frozen-hydrated state. Nucl Instrum Meth B 260:141–148

    Article  CAS  Google Scholar 

  • Tylko G, Mesjasz-Przybyłowicz J, Przybyłowicz WJ (2007b) X-ray microanalysis of biological material in the frozen-hydrated state by PIXE. Microsc Res Tech 70:55–68

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Vavpetič P, Pelicon P, Vogel-Mikuš K, Grlj N, Pongrac P, Jeromel L, Ogrinc N, Regvar M (2013) Micro-PIXE on thin plant tissue samples in frozen hydrated state: A novel addition to JSI nuclear microprobe. Nucl Instrum Meth B 306:140–143

    Article  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Vogel-Mikuš K, Regvar M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Simčič J, Pelicon P, Budnar M (2008a) Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    Article  PubMed  Google Scholar 

  • Vogel-Mikuš K, Simčič J, Pelicon P, Budnar M, Kump P, Necemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008b) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    Article  PubMed  Google Scholar 

  • Vogel-Mikuš K, Arcon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    Article  Google Scholar 

  • Wang YD, Mesjasz-Przybyłowicz J, Tylko G, Barnabas AD, Przybyłowicz WJ (2013) Micro-PIXE analyses of frozen-hydrated semi-thick biological sections. Nucl Instrum Meth B 306:134–139

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot Lond 88:967–988

    Article  CAS  Google Scholar 

  • Wu LH, Zhou SB, Bi D, Guo XH, Qin WH, Wang H, Wang GJ, Luo YM (2006) Sedum plumbizincicola, a new species of the Crassulaceae from Zhejiang. Soils 38:632–633 (in Chinese with English abstract)

    Google Scholar 

  • Wu LH, Li N, Luo YM (2008) Phytoextraction of heavy metal contaminated soil by Sedum plumbizincicola under different agronomic strategies. Proc 5th Int Phytotech Conf, Nanjing, China:49–50

  • Wu LH, Li Z, Akahane I, Liu L, Han CL, Makino T, Luo YM, Christie P (2012) Effects of organic amendments on Cd, Zn and Cu bioavailability in soil with repeated phytoremediation by Sedum plumbizincicola. Int J Phytoremediat 14:1024–1038

    Article  CAS  Google Scholar 

  • Wu LH, Liu YJ, Zhou SB, Guo FG, Bi D, Guo XH, Baker AJM, Smith JAC, Luo YM (2013a) Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. Wu (Crassulaceae): a new species from Zhejiang Province, China. Plant Syst Evol 299:487–498

    Article  Google Scholar 

  • Wu LH, Zhong DX, Du YZ, Lu SY, Fu DQ, Li Z, Li XD, Chi Y, Luo YM, Yan JH (2013b) Emission and control characteristics for incineration of Sedum plumbizincicola biomass in a laboratory-scale entrained flow tube furnace. Int J Phytoremediat 15:219–231

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, Breedon TMSP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Projects 41325003 and 41201300), the National High-technology R&D Program (863 Program) of China (Project 2012AA06A204) and the South African National Research Foundation. We thank Dr Dirk Frei and Ms Riana Rossouw of Stellenbosch University for their assistance in LA-ICP-MS measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wojciech Józef Przybyłowicz or Longhua Wu.

Additional information

Responsible Editor: Henk Schat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 571 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, P., Wang, Y., Przybyłowicz, W.J. et al. Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally. Plant Soil 388, 267–282 (2015). https://doi.org/10.1007/s11104-014-2321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2321-4

Keywords

Navigation