Skip to main content

Advertisement

Log in

Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Ultramafic soils are characterized by relatively high concentrations of nickel (Ni), chromium (Cr), and cobalt (Co). Globally, some ultramafic outcrops are also rich in copper (Cu) and other metals. The occurrence of Cu-accumulating plants on such soils is a very rare phenomenon so far only described from Sri Lanka. The objective of this study was to evaluate the elemental profiles of plants growing in their natural habitat on polymetallic Cu-rich ultramafic soils, with particular focus on unusual uptake of Cu, and possible co-accumulation of other metals.

Methods

This study focused on Cu-rich ultramafic soils in the Bidu-Bidu Hills (Malaysia) and those in Macedo-Niquelândia and Americano do Brasil (Brazil) where chemical analyses of bedrock, soil and plant leaf samples was undertaken.

Results and conclusions

Although the elemental profile of plants growing on Cu-enriched ultramafic soils reflects that of their environment with elevated concentrations of Co, Cr, Cu and Zn, significant accumulation of these metals is rare. Accumulation of Cu by most plants follows an ‘Excluder’ response, with limited Cu uptake, even by Cu-tolerant plants on soils with high total and extractable Cu concentrations. Some plants show slightly higher uptake than normal, and might act as ‘Indicators’, but true hyperaccumulation of this metal is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anic V, Hinojosa LF, Díaz-Forester J, Bustamante E, Fuente L, De LM, Casale JF, de la Harpe JP, Montenegro G, Ginocchio R (2010) Influence of soil chemical variables and altitude on the distribution of high-alpine plants: the case of the Andes of central Chile. Arct Antarct Alp Res 42(2):152–163

    Article  Google Scholar 

  • Baillie I, Evangelista P, Inciong N (2000) Differentiation of upland soils on the Palawan ophiolitic complex, Philippines. Catena 39:283–299

    Article  CAS  Google Scholar 

  • Baker DE, Senef JP (1995) Copper. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–205

    Chapter  Google Scholar 

  • Berbert CO, Svisero DP, Sial AN, Meyer HOA (1981) Upper mantle material in the Brazilian shield. Earth Sci Rev 17:109–133

    Article  CAS  Google Scholar 

  • Beurlen H, Cassedanne JP (1981) The Brazilian mineral resources. Earth Sci Rev 17:177–206

    Article  Google Scholar 

  • Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–545

    Article  CAS  Google Scholar 

  • Brooks RR, Malaisse F (1985) The heavy metal-tolerant flora of southcentral africa – a multidisciplinary approach. Balkema, Rotterdam

    Google Scholar 

  • Brooks RR, Wither ED, Westra LY (1978) Biogeochemical copper anomalies on Salajar Island, Indonesia. J Geochem Explor 10:181–188

    Article  CAS  Google Scholar 

  • Brooks RR, Reeves RD, Morrison RS, Malaisse F (1980) Hyperaccumulation of copper and cobalt: a review. Bull Soc Roy Bot Belg 13:166–172

    Google Scholar 

  • Brooks RR, Trow JM, Veillon JM, Jaffré T (1981) Studies on manganese-accumulating Alyxia species from New Caledonia. Taxon 30(2):420–423

  • Brooks RR, Grégoire J, Madi L, Malaisse F (1982) Phytogéochimie de l’anticlinal de Kasonta (Shaba, Zaïre). Geo Eco Trop 6:219–228

    Google Scholar 

  • Brooks RR, Naidu SD, Malaisse F, Lee J (1987) The elemental content of metallophytes from the copper/cobalt deposits of Central Africa. Bull Soc Roy Bot Belg 119:179–191

    Google Scholar 

  • Brooks RR, Reeves RD, Baker AJM, Rizzo JA, Diaz Ferreira H (1990) The Brazilian serpentine plant expedition (BRASPEX), 1988. Natl Geogr Res 6:205–219

    Google Scholar 

  • Brooks RR, Reeves RD, Baker AJM (1992) The serpentine vegetation of Goiás State, Brazil. In: Baker AJM, Proctor J, Reeves RD (eds) The vegetation of ultramafic (serpentine) soils, intercept. Andover, UK, pp 67–81

  • Chipeng FK, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2009) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328(1–2):235–244

    Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol Plant Mol Biol 31:239–298

    Article  CAS  Google Scholar 

  • Cole MM (1971) Biogeographical/geobotanical and biogeochemical investigations connected with exploration for nickel–copper ores in the hot wet summer/dry winter savanna woodland environment. J S Afr Inst Mines Metall 71:199–209

    CAS  Google Scholar 

  • Cole MM (1973) Geobotanical and biogeochemical investigations in the sclerophyllous woodland and shrub associations of the Eastern Goldfields area of Western Australia with particular reference to the role of Hybanthus floribundus (Lindl.) F. Muell. as a nickel indicator and accumulator plant. J Appl Ecol 10:269–320

    Article  Google Scholar 

  • Cole MM (1991) The vegetation of the greenstone belts of Western Australia. In: Roberts BA, Proctor J (eds) The Ecology of Areas with Serpentinized Rocks: A World View. Academic Publishers, Kluwer, pp 343–373

    Google Scholar 

  • Dohrmann R (2006) Cation exchange capacity methodology II: A modified silver–thiourea method. Appl Clay Sci 34:38–46

    Article  CAS  Google Scholar 

  • Duvigneaud P (1958) La végétation du Katanga et de ses sols métallifères. Bull Soc R Bot Belg 90(2):127–278

    Google Scholar 

  • Faucon M-P, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  CAS  Google Scholar 

  • Faucon M-P, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–27

    Article  Google Scholar 

  • Gonzalez I, Muena V, Cisternas M, Neaman A (2008) Acumulación de cobre en una comunidad vegetal afectada por contaminación minera en el valle de Puchuncaví. Chile central Rev Chil Hist Nat 81(2):279–291

    Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  PubMed  Google Scholar 

  • Hochstetter F (1860) Dun Mountain Copper Mining Company. Nelson Examiner and New Zealand Chronicle, Volume XIX, Issue 34, 28 April 1860, pp 4

  • Jaffré T (1977) Accumulation du manganèse par des especes associées aux terrains ultrabasiques de Nouvelle-Calédonie. Comptes Rendus Academie des Science, Paris 284:1573–1575 Série D

  • Jiang LY, Yang XE, He ZL (2004) Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens. Chemosphere 55:1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Physiol Plant Mol Biol 61:517–534

    Article  Google Scholar 

  • Krämer U, Clemens S (2006) Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamás M, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification from microbes to man. Springer, Berlin, pp 214–272

    Google Scholar 

  • Küpper H, Gotz B, Mijovilovich A, Kupper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151(2):702–714

  • Lee J (1977) Phytochemical and biogeochemical studies on nickel accumulation by some New Caledonian plants. PhD Thesis, Massey University, Palmerston North, NZ

  • Lee WG, Bannister P, Bastow Wilson J, Mark A (1997) Element uptake in an ultramafic flora, Red Mountain, New Zealand. In: Jaffré, T, Reeves, RD Becquer, T (ed) Écologie des milieu sur roches ultramafiques et sur sols métallifères, Documents Scientifiqueset Techniques No. III/2, ORSTOM, Nouméa, pp 179–186

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Amer J 42:421–428

    Article  CAS  Google Scholar 

  • Macnair M (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Malaisse F, Grégoire J, Brooks RR, Morrison RS, Reeves RD (1978) Aeolanthus biformifolius: a hyperaccumulator of copper from Zaïre. Science 199:887–888

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Morrison RS (1980) Aspects of the accumulation of cobalt, copper and nickel by plants. PhD Thesis, Massey University, NZ

  • Morrison RS, Brooks RR, Reeves RD, Malaisse F (1979) Copper and cobalt uptake by metallophytes from Zaïre. Plant Soil 53:535–539

    Article  CAS  Google Scholar 

  • Newton-Smith J (1967) Bidu–Bidu Hills area, Sabah: explanation of sheet 5–117–2 and part of 5–117–1: Borneo Reg Malaysia Geol Surv Rept 4

  • Nilson AA (1981) The nature of the Americano do Brasil mafic–ultramafic complex and associated sulfide mineralization, Goiás, Brazil. PhD Thesis, Department of Geology, University of Western Ontario, London, Ont

  • Paton A, Brooks RR (1996) A re-evaluation of Haumaniastrum species as geobotanical indicators of copper and cobalt. J Geochem Explor 56(1):37–45

  • Peng H, Wang-Müller Q, Witt T, Malaisse F, Küpper H (2012) Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environ Exp Bot 79:58–65

    Article  CAS  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJM (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217–218:8–17

    Article  PubMed  Google Scholar 

  • Proctor J (2003) Vegetation and soil and plant chemistry on ultramafic rocks in the tropical Far East. Perspect Plant Ecol 6:105–124

    Article  Google Scholar 

  • Proctor J, Cole MM (1991) The ecology of ultramafic areas in Zimbabwe. In: Roberts BA, Proctor J (ed), The Ecology of Areas with Serpentinized Rocks: A World View, Kluwer Academic Publishers, pp 313–331

  • Rajakaruna N, Baker AJM (2004) Serpentine: a model habitat for botanical research in Sri Lanka. Cey J Sci (Bio Sci) 32:1–19

    Google Scholar 

  • Rajakaruna N, Bohm BA (2002) Serpentine and its vegetation: a preliminary study from Sri Lanka. J Appl Botany 76:20–28

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    Article  CAS  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal–contaminated soils, Proceedings of the NATO Advanced Study Institute, Třešt’ Castle, Czech Republic, 18–30 August 2002, NATO Science Series: IV: Earth and Environmental Sciences 68. Springer, Berlin, pp 25–52

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Brooks RR (1978) Trace element analysis of geological materials. Wiley, New York

    Google Scholar 

  • Reeves RD, Baker AJM, Becquer T, Echevarria G, Miranda ZJG (2007) The flora and biogeochemistry of the ultramafic soils of Goiás state, Brazil. Plant Soil 293:107–119

    Article  CAS  Google Scholar 

  • Reuther W (1957) Copper and soil fertility. In: Soil, the yearbook of agriculture. U.S. Gov. Printing Office, Washington, D.C. pp 128–135

  • Shepherd PR (1983) Biogeochemical and geobotanical studies of the ultramafic areas of North Cape. BSc (Hons.) Report, Massey University, Palmerston North, New Zealand

  • Stevenson FJ (1986) Cycles of soil– carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, NewYork

    Google Scholar 

  • Tang S, Wilke B, Huang C (1999) The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People’s Republic of China. Plant Soil 209(2):225–232

    Article  CAS  Google Scholar 

  • Trescases JJ, Melfi AJ, Barros de Oliveira SM (1981) Nickeliferous laterites of Brazil. In: Laterization Processes. Proceedings of the international seminar on laterization processes. Trivandrum, India 1979:170–184

  • Van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–33

    Google Scholar 

  • Wang H, Shan X-Q, Wen B, Zhang S, Wang ZJ (2004) Responses of antioxidative enzymes to accumulation of copper in a copper hyperaccumulator of Commelina communis. Arch Environ Contam Toxicol 47:1–9

  • Weng G, Wu L, Wang Z, Luo Y, Christie P (2005) Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture. Environ Int 31(6):880–884

    Article  CAS  PubMed  Google Scholar 

  • Wernick B (1981) The archaean of Brazil. Earth Sci Rev 17:31–48

    Article  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony van der Ent.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Ent, A., Reeves, R.D. Foliar metal accumulation in plants from copper-rich ultramafic outcrops: case studies from Malaysia and Brazil. Plant Soil 389, 401–418 (2015). https://doi.org/10.1007/s11104-015-2385-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2385-9

Keywords

Navigation