Skip to main content

Advertisement

Log in

Advances in titanium metal injection molding

  • Powder Metallurgy Abroad
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

The approaches to production of titanium powder injection molded parts are reviewed. Historically, oxygen levels have been too high for structural use (particularly with the Ti-6Al-4V alloy). However, recent advances in starting powders, binders and sintering facilities now allow oxygen levels in the Ti-6Al-4V alloy to be controlled to about 0.2 wt.% oxygen. This should result in significant expansion of the titanium PIM market place into aerospace, automobiles, surgical instruments, dentistry, communication devices (such as computers and cell phones), knives and guns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Congress of the U.S, Office of Technology Assessment, Advanced Materials by Design, June (1988).

  2. Materials Science and Engineering-Forging Stronger Links to Users, NMAB, National Academy Press Publication NMAB-492, Washington DC (1999).

  3. F. H. Froes, D. Eylon, and H. Bomberge (ed.), Titanium Technology: Present Status and Future Trends, TDA, Dayton, Ohio (1985).

    Google Scholar 

  4. F. H. (Sam) Froes, Yau Te-Lin, and H. G. Weidenger, Titanium, Zirconium and Hafnium. Chapter 8._Materials Science and Technology-Structure and Properties of Nonferrous Alloys, K. H. Matucha (ed.), VCH, Weinheim, FRG (1996), p. 401.

    Google Scholar 

  5. F. H. (Sam) Froes, Titanium, Encyclopedia of Materials Science and Engineering, P. Bridenbaugh (subject editor), Chapters 3.3.5a-3.3.5e, Elsevier, Oxford, UK (2000).

    Google Scholar 

  6. F. H. (Sam) Froes, Titanium Alloys, Handbook of Advanced Materials, K. James (ed.), Chap. 8, Wiley Interscience, Wessel (2004), p. 271.

    Chapter  Google Scholar 

  7. F. H. (Sam) Froes, Titanium Metal Alloys: Handbook of Chemical Industry Economics, Inorganic, Jeff Ellis (ed.), John Wiley and Sons Inc., New York, NY (2000).

    Google Scholar 

  8. R. R. Boyer, G. Welsch, and E.W. Collings (ed.), Materials Properties Handbook: Titanium Alloys, ASM Int., Metals Park, Ohio (1994).

    Google Scholar 

  9. F. H. Froes and D. Eylon, “Powder metallurgy of titanium alloys,” Int. Materials Reviews, 35, 162 (1990).

    CAS  Google Scholar 

  10. F. H. Froes and C. Suryanarayana, Powder Processing of Titanium Alloys, in: Reviews in Particulate Materials, Vol. 1, A. Bose, R. M. German, and A. Lawley (ed.), MPIF, Princeton, NJ (1993), p. 223.

    Google Scholar 

  11. F. Arcella and F. H. (Sam) Froes, “Production of titanium aerospace components from powder using laser forming,” JOM, 52, No. 5, 28 (2000).

    Article  CAS  Google Scholar 

  12. R. M. German, Powder Metallurgy Science: 2nd ed., Chap. 6, MPIF, Princeton, NJ (1994), 192.

    Google Scholar 

  13. F. H. (Sam) Froes and R. M. German, “Titanium powder injection molding (PIM),” Metal Powder Report, 55, No. 6, 12 (2000).

    Article  Google Scholar 

  14. F. H. (Sam) Froes, Fourth International Conference on Spray Forming: Conference Report (LMA, Feb. 2000), Vol. 58, p. 72 (2000).

    Google Scholar 

  15. Tonio Kono, Akira Horata, and Tetsuya Kondo, “Development of titanium & titanium alloy by metal injection molding process,” Powder and Powder Metal, 44, No. 11 (1997).

  16. W. Limberg, E. Aust, T. Ebel, et al., Metal Injection Moulding of an Advanced Bone Screw 7Nb Alloy Powder, Euro’ 2004.

  17. Yoshinri Itoh, Tatsuya Hankou, Kenji Sato, and Hideshi Miura, Improvement of Ductility for Injection Moulding Ti-6Al-4V Alloy, Euro’ 2004.

  18. Hidefumi Nakamura, Tokihiro Shimura, and Kouei Nakabayashi, “Process for production of Ti sintered compacts using the injection molding method,” J. Jap. Soc. Powder and P/M, 46, No. 8 (1999).

  19. Private communication with J. Grohowski, Praxis Technology, Feb. 27 (2006).

  20. K. Simmons, K. S. Weil, and E. Nyberg, Powder Injection Molding of Titanium Compounds, in: Industrial Heating, Dec. (2005), p. 43.

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Poroshkovaya Metallurgiya, Vol. 46, No. 5–6 (455), pp. 118–125, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Froes, F.H.S. Advances in titanium metal injection molding. Powder Metall Met Ceram 46, 303–310 (2007). https://doi.org/10.1007/s11106-007-0048-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-007-0048-y

Keywords

Navigation