Skip to main content
Log in

Metallographic Analysis and Microstructural Image Processing of Sandblasting Nozzles Produced by Powder Metallurgy Methods

  • EXCHANGE OF EXPERIENCE
  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

The structure of sandblasting nozzles is subjected to morphological analysis. Metallographic analysis and full processing of microstructural images show that the studied samples can be used in practice. Modern application software is used to develop a technique for determining the structural and morphological parameters of the sample sandblasting nozzle. Further research of the nozzles, including statistical processing of the characteristics obtained, calculation of average structural sizes, and visualization of structural analysis, is planned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. A. Vityaź, V. M. Kaptsevich, and V. K. Sheleg, Porous Powder Materials and Associated Products [in Russian], Vysheishaya Shkola, Minsk (1987), p. 161.

    Google Scholar 

  2. P. A. Vityaź (ed.), V. V. Mazyuk, L. P. Pilinevich, A. L. Rak, et al., Porous Powder Materials with Anisotropic Pore Structure for Filtration of Liquids and Gases [in Russian], Tonpik, Minsk (2005), p. 251.

  3. S. V. Belov, P. A. Vityaź, V. K. Sheleg, et al., Porous Permeable Materials: Handbook [in Russian], Metallurgiya, Moscow (1987), p. 332.

    Google Scholar 

  4. E. P. Putyatin and S. I. Averin, Processing of Images in Robotics [in Russian], Mashinostroenie, Moscow (1990), p. 320.

    Google Scholar 

  5. C. A. Lindley, Practical Image Processing in C, John Wiley and Sons, New York (1991).

    Google Scholar 

  6. M. Andersson, B. Holmquist, J. Lindquist, et al., “Analysis of film coating thickness and surface area of pharmaceutical pellets using fluorescence microscopy and image analysis,” J. Pharm. Biomed., 22, 325– 339 (2000).

    Article  Google Scholar 

  7. O. M. Stas’ and V. P. Gavrilyuk, “Computer analysis methods in metallographic analysis,” Metody Doslidzh. Kontrol. Yakosti Met., No. 1–2, 48–52 (2000).

  8. B. B. Mandelbrot, The Fractal Geometry of Nature, W. H. Freeman and Company, San Francisco (1982), p. 351.

    Google Scholar 

  9. A. Ilyuschenko, A. Rak, L. Pilinevich, and V. Savich, “Valgevene pulvermetallurgia konstern esitleb,” Keskkonnatechika, No. 5, 37–39 (1998).

  10. A. L. Rak, A. F. Ilyuschenko, V. V. Maziuk, and L. P. Pilinevich, “New technology for production of higheffective porous materials with adjusted pore structure, designed for filtration of gases and liquid,” in: Proc. 1998 Powder Metallurgy World Congress & Exhibition, Granada, Spain (1998), Vol. 5, pp. 225–231.

  11. V. A. Sychyk and O. V. Zabolotnyi, “Practice of making and testing wear-resistant nozzles for sandblasting machines produced by dry radial isostatic pressing,” in: Collected Scientific Papers [in Ukrainian], Lutsk Nats. Univ., Lutsk (2011) Issue 31, pp. 350–353.

  12. P. A. Vityaź, V. K. Sheleg, V. M. Kaptsevich, et al., “Effect of bronze power particle shape on the stability properties of porous materials,” Powder Metall. Met. Ceram., 24, No. 12, 956–959 (1985).

    Article  Google Scholar 

  13. V. Maziuk, A. Rak, and L. Pilinevich, “Method to correct the data of mercury porosimetry,” in: Proc. 1998 Powder Metallurgy World Congress & Exhibition, Granada, Spain (1998), Vol. 4, pp. 443–447.

  14. O. P. Reut, L. S. Boginskii, and E. E. Petyushik, Dry Isostatic Pressing of Compactable Materials [in Russian], Debor, Minsk (1998), p. 258.

    Google Scholar 

  15. O. V. Zabolotnyi, O. Yu. Povstyanoi, and V. D. Rud’, “Development of isostatic pressing of compactable powder environments,” in: Collected Scientific Papers [in Ukrainian], Lutsk Nats. Univ., Lutsk (2001), Issue 9, pp. 152–156.

  16. E. A. Levashov, A. S. Rogachev, V. I. Yukhvid, and I. P. Borovinskaya, Physicochemical and Process Fundamentals of Self-Propagating High-Temperature Synthesis [in Russian], Binom, Moscow (1999), p. 176.

    Google Scholar 

  17. Industrial Computed Tomography Systems [Electronic resource], mode of access: www.xviewct.com.

  18. Xradia Solutions Overview [Electronic resource], mode of access: http://xradia.com/solutions/index.php.

  19. M. Saadatfar, F. Garcia-Moreno, S. Hutzler, et al., “Imaging of metallic foams using X-ray micro-CT,” Colloids Surf. A, 344, No. 1, 107–112 (2009).

    Article  Google Scholar 

  20. K. K. Bodla, J. Y. Murthy, and S. V. Garimella, “Microtomography-based simulation of transport through open-cell metal foams,” Numer. Heat Transfer Part A, 58, No. 7, 527–554 (2010).

    Article  Google Scholar 

  21. S. Mahjoob and K. Vafai, “A synthesis of fluid and thermal transport models for metal foam heat exchangers,” Int. J. Heat Mass Transfer, 51, No. 15–16, 3701–3711 (2008).

    Article  Google Scholar 

  22. M. D. Montminy, A. R. Tannenbaum, and C. W. Macosko, “The 3D-structure of real polymer foams,” J. Colloid Interface Sci., 280, No. 1, 202–211 (2004).

    Article  Google Scholar 

  23. L. A. Feldkamp, L. C. Davis, and J. W. Kress, “Practical cone beam algorithm,” J. Microsc., 185, 67–75 (1997).

    Article  Google Scholar 

  24. T. Pavlidis, Algorithms for Graphics and Image Processing, Computer Science Press, Rockville, Maryland (1982).

    Book  Google Scholar 

  25. O. Yu. Povstyanoy and Yu. V. Kuts, “Review of the current software for computer based research in the processing of metallographic images,” Can. Sci. J., Issue 2, 54–63 (2014).

  26. A. Boukhair, A. Haessler, J. C. Adloff, and A. Nourreddine, “New code for digital imaging system for track measurements,” Nucl. Instrum. Methods B, 160, 550–555 (2000).

    Article  Google Scholar 

  27. K. V. Mardia and T. J. Hainsworth, “A spatial thresholding method for image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., 10, 919–927 (1988).

    Article  Google Scholar 

  28. W. K. Pratt, Digital Image Processing, Wiley-Interscience, New York (1978).

    Google Scholar 

  29. Z. Zhang and A. G. Marshall, “A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra,” J. Am. Soc. Mass Spectrom., 9, 225–233 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Povstyanoi.

Additional information

Translated from Poroshkovaya Metallurgiya, Vol. 54, Nos. 3–4 (502), pp. 136–143, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Povstyanoi, O.Y., Sychuk, V.A., McMillan, A. et al. Metallographic Analysis and Microstructural Image Processing of Sandblasting Nozzles Produced by Powder Metallurgy Methods. Powder Metall Met Ceram 54, 234–240 (2015). https://doi.org/10.1007/s11106-015-9705-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11106-015-9705-8

Keywords

Navigation