Skip to main content
Log in

Two-parameter p, q-variation Paths and Integrations of Local Times

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove two main results. The first one is to give a new condition for the existence of two-parameter \(p, q\)-variation path integrals. Our condition of locally bounded \(p,q\)-variation is more natural and easy to verify than those of Young. This result can be easily generalized to multi-parameter case. The second result is to define the integral of local time \(\int_{-\infty}^\infty\int_0^t g(s,x)d_{s,x}L_s(x)\) pathwise and then give generalized It\(\hat {\rm o}\)’s formula when \(\nabla^-f(s,x)\) is only of bounded \(p,\break q\)-variation in \((s,x)\). In the case that \(g(s,x)=\nabla^-f(s,x)\) is of locally bounded variation in \((s,x)\), the integral \(\int_{-\infty}^\infty\int_0^t \nabla^-f(s,x)d_{s,x}L_s(x)\) is the Lebesgue–Stieltjes integral and was used by Elworthy, Truman and Zhao. When \(g(s,x)=\nabla^-f(s,x)\) is of only locally \(p, q\)-variation, where \(p\geq 1\), \(q\geq 1\), and \(2q+1>2pq\), the integral is a two-parameter Young integral of \(p,q\)-variation rather than a Lebesgue–Stieltjes integral. In the special case that \(f(s,x)=f(x)\) is independent of \(s\), we give a new condition for Meyer's formula and \(\int_{-\infty}^\infty L_{\kern1pt t}(x)d_x\nabla^-f(x)\) is defined pathwise as a Young integral. For this we prove the local time \(L_{\kern1pt t}(x)\) is of \(p\)-variation in \(x\) for each \(t\geq 0\), for each \(p>2\) almost surely (\(p\)-variation in the sense of Lyons and Young, i.e. \({\mathop {\sup }\limits_{E:\;{\text{a}}\;{\text{finite}}\;{\text{partition}}\;{\text{of}}\;{\left[ { - N,N} \right]}} }{\sum\limits_{i = 1}^m {{\left| {L_{t} {\left( {x_{i} } \right)} - L_{t} {\left( {x_{{i - 1}} } \right)}} \right|}^{p} < \infty } }\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, R.B., Doláns-Dade, C.A.: Probability and Measure Theory, 2nd edn. Academic, New York (2000)

    MATH  Google Scholar 

  2. Azéma, J., Jeulin, T., Knight, F., Yor, M.: Quelques calculs de compensateurs impliquant l’injectivité de certauns processus croissants. Sémin. Probab. XXXII(LNM1686), 316–327 (1998)

    Google Scholar 

  3. Bass, R.F., Hambly, B.M., Lyons, T.J.: Extending the Wong–Zakai theorem to reversible Markov processes. J. Eur. Math. Soc. 4(2002), 237–269 (1998)

    MathSciNet  Google Scholar 

  4. Bouleau, N., Yor, M.: Sur la variation quadratique des temps locaux de certaines semimartingales. C. R. Acad. Sci. Paris, Ser. I Math 292, 491–494 (1981)

    MathSciNet  MATH  Google Scholar 

  5. Brosamler, G.A.: Quadratic variation of potentials and harmonic functions. Trans. Amer. Math. Soc. 149, 243–257 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elworthy, K.D., Truman, A., Zhao, H.Z.: Generalized It\(\hat {\rm o}\) formulae and space-time Lebesgue–Stieltjes integrals of local times. Sémin. Probab. 40 (2006), (to appear)

  7. Eisenbaum, N.: Integration with respect to local time. Potential Anal. 13, 303–328 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenbaum, N.: Local time–space calculus for revisible semi-martingales. In: Séminaire de Probabilités 40, Lectures Notes in Math., Springer, Berlin Heidelberg New York, (2006) (to appear)

  9. Feng, C.R., Zhao, H.Z.: A Generalized It\(\hat {\rm o}\)’s Formula in Two-Dimensions and Stochastic Lebesgue–Stieltjes Integrals. Preprint (2004)

  10. Flandoli, F., Russo, F., Wolf, J.: Some stochastic differential equations with distributional drift. Osaka J. Math. 40(2), 493–542 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Föllmer, H., Protter, P.: On It\(\hat {\rm o}\) formula for multidimensional Brownian motion. Probab. Theory Relat. Fields 116, 1–20 (2000)

    Article  MATH  Google Scholar 

  12. Ghomrasni, R., Peskir, G.: Local Time–Space Caculus and Extensions of It\(\hat {\rm o}\)’s Formula. In: High Dimensional Probability, III (Sandjberg, 2002), pp. 177–192, Progr. Probab., 55, Birkhäuser, Basel (2003)

  13. Hambly, B.M., Lyons, T.L.: Stochastic area for Brownian motion the Sierpinski gasket. Ann. Probab. 26, 132–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin Heidelberg New York (1998)

    Google Scholar 

  15. Kendall, W.: The radial part of a \(\Gamma\)-martingale and non-implosion theorem. Ann. Probab. 23, 479–500 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ledoux, M., Lyons, T.J., Qian, Z.: Lévy area of Wiener processes in Banach Spaces. Ann. Prob. 30, 546–578 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lévy, P.: Processus stochastiques et mouvement brownien. Gauthier-Villars, Paris (1948)

    MATH  Google Scholar 

  18. Lyons, T.: Differential equations driven by rough signals (I): An extension of an inequality of L.C. Young. Math. Res. Lett. 1, 451–464 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Lyons, T.: Differential equations driven by rough signals. Rev. Mat. Iberoam. 14, 215–310 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Lyons, T., Qian, Z.: System Control and Rough Paths. Clarendon, Oxford (2002)

    MATH  Google Scholar 

  21. Marcus, M.B., Rosen, J.: \(p\)-variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments. Ann. Probab. 20, 1685–1713 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Meyer, P.A.: Un cours sur les intégrales stochastiques. Sémin. Probab. vol. 10, Lecture Notes in Math, 511, pp. 245–400. Springer, Berlin Heidelberg New York (1976)

    Google Scholar 

  23. Moret, S., Nualart, D.: Generalization of Itô’s formula for smooth nondegenerate martingales. Stoch. Process. Appl. 91, 115–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peskir, G.: A change-of-variable formula with local time on curves. J. Theor. Probab. 18, 499–535 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peskir, G.: A change-of-variable formula with local time on surfaces. Séminaire de Probabilités 40. Lectures Notes in Math., Springer, Berlin Heidelberg New York (2006) (to appear)

  26. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 2nd edn. Springer, Berlin Heidelberg New York (1994)

    MATH  Google Scholar 

  27. Rogers, L.C.G., Walsh, J.B.: Local time and stochastic area integrals. Ann. Probab. 19(2), 457–482 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tanaka, H.: Note on continuous additive functionals of the 1-dimensional Brownian path. Z. Wahrscheinlichkeitstheor. Verw Gebiete 1, 251–257 (1963)

    Article  MATH  Google Scholar 

  29. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, D.L. (ed.) École dété de Probabilité de Saint Flour, XIV, Lecture Notes in Math. 1180, pp. 265–439. (1986)

  30. Young, L.C.: An inequality of Hölder type, connected with Stieltjes integration. Acta Math. 67, 251–282 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  31. Young, L.C.: General inequalities of Stieltjes integrals and the convergence of Fourier series. Math. Ann. 115, 581–612 (1938)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaizhong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, C., Zhao, H. Two-parameter p, q-variation Paths and Integrations of Local Times. Potential Anal 25, 165–204 (2006). https://doi.org/10.1007/s11118-006-9024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-006-9024-2

Mathematics Subject Classifications (2000)

Key words

Navigation