Skip to main content

Advertisement

Log in

Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We study the connection between the p-Talagrand inequality and the q-logarithmic Sololev inequality for conjugate exponents p ≥ 2, q ≤ 2 in proper geodesic metric spaces. By means of a general Hamilton–Jacobi semigroup we prove that these are equivalent, and moreover equivalent to the hypercontractivity of the Hamilton–Jacobi semigroup. Our results generalize those of Lott and Villani. They can be applied to deduce the p-Talagrand inequality in the sub-Riemannian setting of the Heisenberg group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Tilli, P.: Selected topics on “analysis in metric spaces”. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School]. Scuola Normale Superiore, Pisa (2000)

  2. Bakry, D., Émery, M.: Diffusions hypercontractives. In: Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Chapter  Google Scholar 

  3. Barthe, F., Kolesnikov, A.V.: Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18(4), 921–979 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bobkov, S.G., Gentil, I., Ledoux, M.: Hypercontractivity of Hamilton–Jacobi equations. J. Math. Pures Appl. (9), 80(7), 669–696 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Bobkov, S.G., Götze, F.: Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163(1), 1–28 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bobkov, S.G., Ledoux, M.: From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10(5), 1028–1052 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cattiaux, P., Guillin, A.: On quadratic transportation cost inequalities. J. Math. Pures Appl. 86(9), 341–361 (2006)

    MathSciNet  Google Scholar 

  8. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cordero-Erausquin, D., McCann, R.J., Schmuckenschläger, M.: A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2), 219–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dragoni, F.: Metric Hopf–Lax formula with semicontinuous data. Discrete Contin. Dyn. Syst. 17(4), 713–729 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  12. Gentil, I., Malrieu, F.: Equations de Hamilton–Jacobi et inégalités entropiques généralisées. C. R. Math. Acad. Sci. Paris 335(5), 437–440 (2002)

    MATH  MathSciNet  Google Scholar 

  13. Gozlan, N.: A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab. 37(6), 2480–2498 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gozlan, N., Roberto, C., Samson, P.-M.: A new characterization of Talagrand’s transport-entropy inequalities and applications. Ann. Probab. 39(3), 857–880 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gozlan, N., Roberto, C., Samson, P.-M.: From concentration to logarithmic Sobolev and Poincaré inequalities. J. Funct. Anal. 260(5), 1491–1522 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gromov, M.: Carnot–Carathéodory spaces seen from within. In: Sub-Riemannian Geometry, Progr. Math., vol. 144, pp. 79–323. Birkhäuser, Basel (1996)

    Chapter  Google Scholar 

  17. Inglis, J., Papageorgiou, N.S.: Logarithmic Sobolev inequalities for infinite dimensional Hörmander type generators on the Heisenberg group. Potential Anal. 31(1), 79–102 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Keith, S.: Modulus and the Poincaré inequality on metric measure spaces. Math. Z. 245(2), 255–292 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Keith, S.: A differentiable structure for metric measure spaces. Adv. Math. 183(2), 271–315 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lott, J., Villani, C.: Hamilton–Jacobi semigroup on length spaces and applications. J. Math. Pures Appl. (9) 88(3), 219–229 (2007)

    MATH  MathSciNet  Google Scholar 

  23. Manfredi, J.J., Stroffolini, B.: A version of the Hopf–Lax formula in the Heisenberg group. Commun. Partial Differ. Equ. 27(5–6), 1139–1159 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marton, K.: A simple proof of the blowing-up lemma. IEEE Trans. Inf. Theory 32(3), 445–446 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Marton, K.: Bounding \(\bar d\)-distance by informational divergence: a method to prove measure concentration. Ann. Probab. 24(2), 857–866 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. McCann, R.J.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rachev, S.T.: The Monge–Kantorovich mass transference problem and its stochastic applications. Theory Probab. Appl. 29(4), 647–676 (1985)

    Article  MATH  Google Scholar 

  28. Sturm, K.-T.: On the geometry of metric measure spaces. I. Acta Math. 196(1), 65–131 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sturm, K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196(1), 133–177 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3), 587–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  31. Villani, C.: Optimal transport: old and new. Grundlehren der Mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Engulatov.

Additional information

Z. M. Balogh was supported by the Swiss Nationalfond, EC Project GALA: “Sub-Riemannian geometric analysis in Lie groups,” and ERC Project HCAA, “Harmonic and complex analysis and applications”, while A. Engulatov and O. E. Maasalo were supported by the EC Project GALA: “Sub-Riemannian geometric analysis in Lie groups.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balogh, Z.M., Engulatov, A., Hunziker, L. et al. Functional Inequalities and Hamilton–Jacobi Equations in Geodesic Spaces. Potential Anal 36, 317–337 (2012). https://doi.org/10.1007/s11118-011-9232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-011-9232-2

Keywords

Mathematics Subject Classifications (2010)

Navigation