Skip to main content
Log in

A Poincaré Cone Condition in the Poincaré Group

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Ben Arous and Gradinaru (Potential Anal 8(3):217–258, 1998) described the singularity of the Green function of a general sub-elliptic diffusion. In this article we first adapt their proof to the more general context of a hypoelliptic diffusion. In a second time, we deduce a Wiener criterion and a Poincaré cone condition for a relativistic diffusion with values in the Poincaré group (i.e the group of affine direct isometries of the Minkowski space-time).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Théorie du potentiel sur les graphes et les variétés. Lecture Notes in Math., vol. 1427. Springer, Berlin (1990)

    Google Scholar 

  2. Angst, J.: Étude de diffusions à valeurs dans des variétés Lorentziennes. PhD thesis, Université de Strasbourg (2009)

  3. Bailleul, I.: Poisson boundary of a relativistic diffusion. Probab. Theory Relat. Fields 141(1–2), 283–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bailleul, I.: A stochastic approach to relativistic diffusions. Ann. Inst. Henri Poincaré Probab. Stat. 46(3), 760–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bailleul, I., Raugi, A.: Where does randomness lead in spacetime? ESAIM Probab. Stat. 14, 16–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bass, R.F.: Probabilistic Techniques in Analysis. Probability and its Applications (New York). Springer, New York (1995)

    Google Scholar 

  7. Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier (Grenoble) 39(1), 73–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ben Arous, G., Gradinaru, M.: Singularities of hypoelliptic Green functions. Potential Anal. 8(3), 217–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic, New York (1968)

    Google Scholar 

  10. Bony, J.-M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénrés. Ann. Inst. Fourier (Grenoble) 19(fasc. 1), 277–304 xii (1969)

    Google Scholar 

  11. Castell, F.: Asymptotic expansion of stochastic flows. Probab. Theory Relat. Fields 96(2), 225–239 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chaleyat-Maurel, M., Le Gall, J.-F.: Green function, capacity and sample paths properties for a class of hypoelliptic diffusion processes. Probab. Theory Relat. Fields 83(1–2), 219–264 (1989)

    Article  MATH  Google Scholar 

  13. Delarue, F., Menozzi, S.: Density estimates for a random noise propagating through a chain of differential equations. J. Funct. Anal. 259(6), 1577–1630 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6, 241–268 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Wiener’s criterion for the heat equation. Arch. Ration. Mech. Anal. 78(4), 293–314 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  16. Franchi, J., Le Jan, Y.: Hyperbolic Dynamics and Brownian Motion. Oxford University Press, London, UK (2012)

    Book  MATH  Google Scholar 

  17. Franchi, J., Le Jan, Y.: Relativistic diffusions and Schwarzschild Geometry. Comm. Pure Appl. Math. 60(2), 187–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gallardo, L.: Capacités, mouvement Brownien et problème de l’épine de Lebesgue sur les groupes de Lie nilpotents. In: Proc. 7th Oberwolfach Conference on Probability Measures on Groups (1981)

  19. Garofalo, N., Lancolleni, E.: Wiener’s criterion for parabolic equations with variable coefficients and its consequences. Trans. Amer. Math. Soc. 308(2), 811–836 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Garofalo, N., Lancolleni, E.: Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type. Trans. Amer. Math. Soc. 321(2), 775–792 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garofalo, N., Segàla, F.: Estimates of the fundamental solution and Wiener’s criterion for the heat equation on the Heisenberg group. Indiana Univ. Math. J. 39(4), 1155–1196 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hörmander, L.: Linear Partial Differential Operators. Springer, New York (1963)

    Book  MATH  Google Scholar 

  23. Konakov, V., Menozzi, S., Molchanov, S.: Explicit parametrix and local limit theorem for some degenerate diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 908–923 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lamperti, J.: Wiener’s test and Markov chains. J. Math. Anal. Appl. 6(1), 58–66 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  25. Menozzi, S.: Parametrix techniques and martingale problems for some degenerate Kolmogorov equations. Electron. Commun. Probab. 16, 234–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I. Basic properties. Acta Math. 155(1–2), 103–147 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  27. Negrini, P., Scornazzani, V.: Wiener criterion for a class of degenerate elliptic operators. J. Differ. Equ. 66(2), 151–164 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of square of vector fields. Invent. Math. 78(1), 143–160 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tardif, C: Etude infinitésimale et asymptotique de certains flots stochastiques relativistes. PhD thesis, Université de Strasbourg (2012)

  30. Uchiyama, K.: A probabilistic proof and applications of Wiener’s test for the heat operator. Math. Ann. 283(1), 65–86 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Tardif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tardif, C. A Poincaré Cone Condition in the Poincaré Group. Potential Anal 38, 1001–1030 (2013). https://doi.org/10.1007/s11118-012-9304-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-012-9304-y

Keywords

Mathematics Subject Classifications (2010)

Navigation