Skip to main content
Log in

The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Many non-photosynthetic species of protists and metazoans are capable of hosting viable algal endosymbionts or their organelles through adaptations of phagocytic pathways. A form of mixotrophy combining phototrophy and heterotrophy, acquired phototrophy (AcPh) encompasses a suite of endosymbiotic and organelle retention interactions, that range from facultative to obligate. AcPh is a common phenomenon in aquatic ecosystems, with endosymbiotic associations generally more prevalent in nutrient poor environments, and organelle retention typically associated with more productive ones. All AcPhs benefit from enhanced growth due to access to photosynthetic products; however, the degree of metabolic integration and dependency in the host varies widely. AcPh is found in at least four of the major eukaryotic supergroups, and is the driving force in the evolution of secondary and tertiary plastid acquisitions. Mutualistic resource partitioning characterizes most algal endosymbiotic interactions, while organelle retention is a form of predation, characterized by nutrient flow (i.e., growth) in one direction. AcPh involves adaptations to recognize specific prey or endosymbionts and to house organelles or endosymbionts within the endomembrane system but free from digestion. In many cases, hosts depend upon AcPh for the production of essential nutrients, many of which remain obscure. The practice of AcPh has led to multiple independent secondary and tertiary plastid acquisition events among several eukaryote lineages, giving rise to the diverse array of algae found in modern aquatic ecosystems. This article highlights those AcPhs that are model research organisms for both metazoans and protists. Much of the basic biology of AcPhs remains enigmatic, particularly (1) which essential nutrients or factors make certain forms of AcPh obligatory, (2) how hosts regulate and manipulate endosymbionts or sequestered organelles, and (3) what genomic imprint, if any, AcPh leaves on non-photosynthetic host species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albers D, Wiessner W (1985) Nitrogen nutrition of endosymbiotic Chlorella spec. Endocytobiosis Cell Res 2:55–64

    Google Scholar 

  • Anderson OR (1983) Radiolaria. Springer-Verlag, Heidelberg

    Google Scholar 

  • Archibald JM (2009) The puzzle of plastid evolution. Curr Biol 19:R81–R88

    CAS  PubMed  Google Scholar 

  • Berk SG, Parks LH, Ting RS (1991) Photoadaptation alters the ingestion rate of Paramecium bursaria, a mixotrophic ciliate. Appl Environ Microbiol 57:2312–2316

    CAS  PubMed  Google Scholar 

  • Bernhard JM, Bowser SS (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Sci Rev 46:149–165

    CAS  Google Scholar 

  • Berninger UG, Finlay BJ, Canter HM (1986) The spatial-distribution and ecology of zoochlorellae-bearing ciliates in a productive pond. J Protozool 33:557–563

    Google Scholar 

  • Bhattacharya D, Archibald JM, Weber APM, Reyes-Prieto A (2007) How do endosymbionts become organelles? Understanding early events in plastid evolution. Bioessays 29:1239–1246

    CAS  PubMed  Google Scholar 

  • Blackbourn DJ, Taylor F, Blackborn J (1973) Foreign organelle retention by ciliates. J Protozool 20(20):286–288

    Google Scholar 

  • Burkholder PR, Burkholder LM, Almodóvar LR (1967) Carbon assimilation of marine flagellate blooms in neritic waters of southern Puerto Rico. Bull Mar Sci 17:1–15

    CAS  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    PubMed  Google Scholar 

  • Caron DA, Swanberg NR (1990) The ecology of Planktonic Sarcodines. Rev Aquat Sci 3:147–180

    Google Scholar 

  • Caron DA, Goldman JC, Fenchel T (1990) Protozoan respiration and metabolism. In: Capriulo GM (ed) Ecology of marine protozoa. Oxford University Press, New York, pp 307–322

    Google Scholar 

  • Caron DA, Michaels AF, Swanberg NR, Howse FA (1995) Primary productivity by symbiont-bearing planktonic sarcodines (Acantharia, Radiolaria, Foraminifera) in surface waters near Bermuda. J Plankton Res 17:103–129

    Google Scholar 

  • Cavalier-Smith T (1981) The origin and early evolution of the eukaryotic cell. In: Carlile MJ, Collins JF, Moseley BEB (eds) Molecular and cellular aspects of microbial evolution. Cambridge University Press, Cambridge, pp 33–84

    Google Scholar 

  • Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366

    CAS  PubMed  Google Scholar 

  • Cernichiari E, Muscatine L, Smith DC (1969) Maltose excretion by the symbiotic algae of Hydra viridis. Proc R Soc B 173:557–576

    CAS  Google Scholar 

  • Crossland CJ, Barnes DJ, Cox T, Devereux M (1980) Compartmentation and turnover of organic carbon in the staghorn coral Acropora formosa. Mar Biol 59:181–187

    CAS  Google Scholar 

  • Dale T, Dahl E (1987) Mass occurrence of planktonic oligotrichous ciliates in a bay in southern Norway. J Plankton Res 9(5):871–879

    Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy-requirements of Pocillopora eydouxi Coral Reefs 2:181–186

    Google Scholar 

  • Delwiche CF (1999) Tracing the thread of plastid diversity through the tapestry of life. Am Nat 154:S164–S177

    PubMed  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press Inc, New York

    Google Scholar 

  • Duguay LE (1983) Comparative laboratory and field studies on calcification and carbon fixation in foraminiferal-algal associations. J Foraminifer Res 13:252–261

    Google Scholar 

  • Esteban GF, Finlay BJ, Clarke KJ (2009) Sequestered organelles sustain aerobic microbial life in anoxic environments. Environ Microbiol 11:544–550

    PubMed  Google Scholar 

  • Faber WW, Lee JJ (1991) Feeding and growth of the foraminifer Peneroplis planatus (Fichtel and Moll) Monfort. Symbiosis 10:63–82

    Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611

    Google Scholar 

  • Feinstein TN, Traslavina R, Sun MY, Lin SJ (2002) Effects of light on photosynthesis, grazing, and population dynamics of the heterotrophic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol 38:659–669

    CAS  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. III. Adaptations to heterogeneous environments. Mar Ecol Prog Ser 9:25–33

    Google Scholar 

  • Fields SD, Rhodes RG (1991) Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). J Phycol 27:525–529

    Google Scholar 

  • Finlay BJ, Clarke KJ, Cowling AJ, Hindle RM, Rogerson A et al (1988) On the abundance and distribution of protozoa and their food in a productive fresh water pond. Eur J Protistol 23:205–217

    Google Scholar 

  • Finlay BJ, Maberly SC, Esteban GF (1996) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol Ecol 20:229–235

    CAS  Google Scholar 

  • Fishman Y, Zlotkin E, Sher D (2008) Expulsion of symbiotic algae during feeding by the green hydra—a mechanism for regulating symbiont density? PLoS ONE 3:e2603 2601–2605

    PubMed  Google Scholar 

  • Flynn KJ, Mitra A (2009) Building the “perfect beast”: modeling mixotrophic plankton. J Plankton Res 31:965–992

    CAS  Google Scholar 

  • Fujita K, Fujimura H (2008) Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats. J Foraminifer Res 38:117–126

    Google Scholar 

  • Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J Exp Biol 203:3445–3457

    CAS  PubMed  Google Scholar 

  • Garcia-Cuetos L, Moestrup O, Hansen PJ, Daugbjerg N (2010) The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. Harmful Algae 9:25–38

    Google Scholar 

  • Gast RJ, Caron DA (2001) Photosymbiotic associations in planktonic foraminifera and radiolaria. Hydrobiologia 461:1–7

    Google Scholar 

  • Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39–45

    CAS  PubMed  Google Scholar 

  • Gates RD, Hoeghguldberg O, McFallngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. PNAS 92:7430–7434

    CAS  PubMed  Google Scholar 

  • Green BJ, Li WY, Manhart JR, Fox TC, Summer EJ et al (2000) Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. Plant Physiol 124:331–342

    CAS  PubMed  Google Scholar 

  • Greene RW (1970) Symbiosis in sacoglossan opisthobranchs: functional capacity of symbiotic chloroplasts. Mar Biol 7:138–142

    CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    CAS  PubMed  Google Scholar 

  • Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pages C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light, and ammonium concentrations. Limnol Oceanogr 47:782–790

    Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2008) Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J Exp Biol 211:860–865

    CAS  PubMed  Google Scholar 

  • Grzymski J, Schofield OM, Falkowski PG (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580

    CAS  Google Scholar 

  • Gustafson DE, Stoecker DK, Johnson MD, Van Heukelem WF, Sneider K (2000) Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405:1049–1052

    CAS  PubMed  Google Scholar 

  • Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol 39:440–448

    CAS  Google Scholar 

  • Hallegraeff GM, Lucas IAN (1988) The marine dinoflagellate genus Dinophysis (Dinophyceae)—photosynthetic, neritic and non-photosynthetic, oceanic species. Phycologia 27:25–42

    Google Scholar 

  • Hansen PJ, Fenchel T (2006) The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res 2:169–177

    Google Scholar 

  • Hansen PJ, Miranda L, Azanza R (2004) Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Mar Ecol Prog Ser 275:79–87

    CAS  Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern planktonic foraminifera. Springer-Verlag, New York

    Google Scholar 

  • Hibberd DJ (1977) Ultrastructure of the cryptomonad endosymbiont of the red-water ciliate Mesodinium rubrum. J Mar Biol Assoc UK 57:45–61

    Google Scholar 

  • Hinde R (1978) The metabolism of photosynthetically fixed carbon by isolated chloroplasts from Codium fragile (Chlorophyta: Siphonales) and by Elysia viridis (Mollusca: Sacoglossa). Biol J Linn Soc 10:329–342

    Google Scholar 

  • Hinde R (1983) Retention of algal chloroplasts by molluscs. In: Goff LJ (ed) Algal symbiosis a continuum of interaction strategies. Cambridge University Press, Cambridge, pp 97–107

    Google Scholar 

  • Horiguchi T, Pienaar RN (1991) Ultrastructure of a marine dinoflagellate, Peridinium quinquecorne Abe (Peridiniales) from South-Africa with particular reference to its chrysophyte endosymbiont. Bot Mar 34:123–131

    Google Scholar 

  • Horiguchi T, Pienaar RN (1992) Amphidinium latum Lebour (Dinophyceae), a sand-dwelling dinoflagellate feeding on cryptomonads. Jpn J Phycol 40:353–363

    Google Scholar 

  • Horiguchi T, Pienaar RN (1994) Ultrastructure of a new marine sand-dwelling dinoflagellate Gymnodinium quadrilobatum sp. nov. (Dinophyceae) with special reference to its endosymbiotic algae. Eur J Phycol 29:237–245

    Google Scholar 

  • Houlbrèque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol Ecol 296:145–166

    Google Scholar 

  • Jacobson DM, Andersen RA (1994) The discovery of mixotrophy in photosynthetic species of Dinophysis (Dinophyceae)—light and electron-microscopic observations of food vacuoles in Dinophysis acuminata, D. norvegica and 2 heterotrophic dinophysoid dinoflagellates. Phycologia 33:97–110

    Google Scholar 

  • Jakobsen HH, Hansen PJ, Larsen J (2000) Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar Ecol Prog Ser 201:121–128

    Google Scholar 

  • Janson S (2004) Molecular evidence that plastids in the toxin-producing dinoflagellate genus Dinophysis originate from the free-living cryptophyte Teleaulax amphioxeia. Environ Microbiol 6:1102–1106

    CAS  PubMed  Google Scholar 

  • Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST et al (2005) Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat Microb Ecol 40:133–150

    Google Scholar 

  • Johnson MD, Stoecker DK (2005) Role of feeding in growth and photophysiology of Myrionecta rubra. Aquat Microb Ecol 39:303–312

    Google Scholar 

  • Johnson PW, Donaghay PL, Small EB, Sieburth JM (1995) Ultrastructure and ecology of Perispira ovum (Ciliophora, Litostomatea)—an aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro-oxic habitat. J Eukaryot Microbiol 42:323–335

    Google Scholar 

  • Johnson MD, Tengs T, Oldach D, Stoecker DK (2006) Sequestration, performance, and functional control of cryptophyte plastids in the ciliate Myrionecta rubra (Ciliophora). J Phycol 42:1235–1246

    CAS  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428

    CAS  PubMed  Google Scholar 

  • Jones RI (1994) Mixotrophy in planktonic protists as a spectrum of nutritional strategies. Mar Microb Food Webs 8:87–96

    Google Scholar 

  • Jonsson PR (1987) Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar Microb Food Webs 2:55–68

    CAS  Google Scholar 

  • Jørgensen BB, Erez J, Revsbech NP, Cohen Y (1985) Symbiotic photosynthesis in a planktonic foraminiferan, Globigerinoides sacculifer (Brady) studied with microelectrodes. Limnol Oceanogr 30:1253–1267

    Google Scholar 

  • Kamako S, Hoshina R, Ueno S, Imamura N (2005) Establishment of axenic endosymbiotic strains of Japanese Paramecium bursaria and the utilization of carbohydrate and nitrogen compounds by the isolated algae. Eur J Protistol 41:193–202

    Google Scholar 

  • Karakashian SJ (1963) Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol Zool 36:52–68

    Google Scholar 

  • Kato Y, Imamura N (2008a) Effect of calcium ion on uptake of amino acids by symbiotic Chlorella F36-ZK isolated from Japanese Paramecium bursaria. Plant Sci 174:88–96

    CAS  Google Scholar 

  • Kato Y, Imamura N (2008b) Effect of sugars on amino acid transport by symbiotic Chlorella. Plant Physiol Biochem 46:911–917

    CAS  PubMed  Google Scholar 

  • Kato Y, Imamura N (2009) Amino acid transport systems of Japanese Paramecium symbiont F36-ZK. Symbiosis 47:99–107

    CAS  Google Scholar 

  • Kawaguti S, Yamasu T (1965) Electron microscopy on the symbiosis between an elysioid gastropod and chloroplasts of a green alga. Biol J Okayama U 11:57–65

    Google Scholar 

  • Kim S, Kang YG, Kim HS, Yih W, Coats DW et al (2008) Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat Microb Ecol 51:301–310

    Google Scholar 

  • Kodama Y, Fujishima M (2007) Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process. Protoplasma 231:55–63

    CAS  PubMed  Google Scholar 

  • Kodama Y, Fujishima M (2009) Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria. Protist 160:65–74

    PubMed  Google Scholar 

  • Kodama Y, Nakahara M, Fujimura H (2007) Symbiotic alga Chlorella vulgaris of the ciliate Paramecium bursaria shows temporary resistance to host lysosomal enzymes during the early infection process. Protoplasma 230:61–67

    CAS  PubMed  Google Scholar 

  • Köhler S, Delwiche CF, Denny PW, Tilney LG, Webster P et al (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489

    PubMed  Google Scholar 

  • Koike K, Takishita K (2008) Anucleated cryptophyte vestiges in the gonyaulacalean dinoflagellates Amylax buxus and Amylax triacantha (Dinophyceae). Phycol Res 56:301–311

    Google Scholar 

  • Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M et al (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 156:225–237

    CAS  PubMed  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schmidt GW et al (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Google Scholar 

  • Larsen J (1988) An ultrastructural-study of Amphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27:366–377

    Google Scholar 

  • Laval-Peuto M, Febvre MM (1986) On plastid symbiosis in Tontonia appendiculariformis. BioSyst 19:137–157

    CAS  Google Scholar 

  • Laval-Peuto M, Rassoulzadegan F (1988) Autofluorescence of marine planktonic oligotrichina and other ciliates. Hydrobiologia 159:99–110

    Google Scholar 

  • Lee JJ (2006) Algal symbiosis in larger foraminifera. Symbiosis 42:63–75

    Google Scholar 

  • Lee JJ, Bock WD (1976) The importance of feeding in two species of Soritid foraminifera with algal symbionts. Bull Mar Sci 26:530–537

    Google Scholar 

  • Lee JJ, Zucker W (1969) Algal flagellate symbiosis in the foraminifer Archaias. J Protozool. 16:71–81

    Google Scholar 

  • Lewitus AJ, Glasgow HB, Burkholder JM (1999) Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). J Phycol 35:303–312

    Google Scholar 

  • Lindholm T (1985) Mesodinium rubrum—a unique photosynthetic ciliate. Adv Aquat Microb 3:1–48

    Google Scholar 

  • Lobban CS, Schefter M, Simpson AGB, Pochon X, Pawlowski J et al (2002) Maristentor dinoferus n. gen., n. sp., a giant heterotrich ciliate (Spirotrichea:Heterotrichida) with zooxanthellae, from coral reefs on Guam, Mariana Islands. Mar Biol 141:207–208 140:411

    Google Scholar 

  • Lobban CS, Modeo L, Verni F, Rosati G (2005) Euplotes uncinatus (Ciliophora, Hypotrichia), a new species with zooxanthellae. Mar Biol 147:1055–1061

    Google Scholar 

  • Lombard F, Erez J, Michel E, Labeyrie L (2009) Temperature effect on respiration and photosynthesis of the symbiont-bearing planktonic foraminifera Globigerinoides ruber, Orbulina universa, and Globigerinella siphonifera. Limnol Oceanogr 54:210–218

    CAS  Google Scholar 

  • Lopez E (1979) Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability, and persistence. Mar Biol 53:201–211

    CAS  Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. W.H. Freeman & Co, San Francisco, p 419

    Google Scholar 

  • Mazumdar J, Wilson EH, Masek K, Hunter CA, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. PNAS 103:13192–13197

    CAS  PubMed  Google Scholar 

  • McAuley PJ (1987) Nitrogen limitation and amino-acid metabolism of Chlorella symbiotic with green hydra. Planta 171:532–538

    CAS  Google Scholar 

  • McManus GB, Fuhrman JA (1986) Photosynthetic pigments in the ciliate Laboea strobila from Long Island Sound, USA. J Plankton Res 8:317–327

    Google Scholar 

  • McManus GB, Zhang H, Lin SJ (2004) Marine planktonic ciliates that prey on macroalgae and enslave their chloroplasts. Limnol Oceanogr 49:308–313

    Google Scholar 

  • Mews LK, Smith DC (1982) The green Hydra symbiosis. VI. What is the role of maltose transfer from alga to animal? Proc R Soc B 216:397–413

    CAS  Google Scholar 

  • Minnhagen S, Janson S (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 57:47–54

    CAS  PubMed  Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K et al (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    CAS  PubMed  Google Scholar 

  • Mujer CV, Andrews DL, Manhart JR, Pierce SK, Rumpho ME (1996) Chloroplast genes are expressed during intracellular symbiotic association of Vaucheria litorea plastids with the sea slug Elysia chlorotica. PNAS 93:12333–12338

    CAS  PubMed  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523

    CAS  Google Scholar 

  • Muscatine L, Lenhoff HM (1963) Symbiosis: on the role of algae symbiotic with Hydra. Science 142:956–958

    CAS  PubMed  Google Scholar 

  • Muscatine L, Lenhoff HM (1965) Symbiosis of hydra and algae. II. Effects of limited food and starvation on growth of symbiotic and aposymbiotic Hydra. Biol Bull 129:316–328

    Google Scholar 

  • Muscatine L, McNeil PL (1989) Endosymbiosis in Hydra and the evolution of internal defense systems. Am Zool 29:371–386

    Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    CAS  Google Scholar 

  • Myung G, Yih W, Kim HS, Park JS, Cho BC (2006) Ingestion of bacterial cells by the marine photosynthetic ciliate Myrionecta rubra. Aquat Microb Ecol 44:175–180

    Google Scholar 

  • Nagai S, Nitshitani G, Tomaru Y, Sakiyama S, Kamiyama T (2008) Predation by the toxic dinoflagellate Dinophysis fortii on the ciliate Myrionecta rubra and observation of sequestration of ciliate chloroplasts. J Phycol 44:909–922

    Google Scholar 

  • Nishitani G, Nagai S, Takano Y, Sakiyama S, Baba K et al (2008) Growth characteristics and phylogenetic analysis of the marine dinoflagellate Dinophysis infundibulus (Dinophyceae). Aquat Microb Ecol 52:209–221

    Google Scholar 

  • Oakley BR, Taylor FJR (1978) Evidence for a new type of endosymbiotic organization in a population of the ciliate Mesodinium rubrum from British Columbia. BioSyst 10:361–369

    CAS  Google Scholar 

  • Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287

    CAS  PubMed  Google Scholar 

  • Packard T, Blasco D, Barber R (1978) Mesodinium rubrum in the Baja California upwelling system. In: Boje R, Tomczak M (eds). Springer-Verlag, Berlin, pp 73–89

  • Park MG, Kim S, Kim HS, Myung G, Kang YG et al (2006) First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat Microb Ecol 45:101–106

    Google Scholar 

  • Park JS, Myung G, Kim HS, Cho BC, Yih W (2007) Growth responses of the marine photosynthetic ciliate Myrionecta rubra to different cryptomonad strains. Aquat Microb Ecol 48:83–90

    Google Scholar 

  • Park MG, Park JS, Kim M, Yih W (2008) Plastid dynamics during survival of Dinophysis caudata without its ciliate prey. J Phycol 44:1154–1163

    CAS  Google Scholar 

  • Pearse VB (1970) Incorporation of metabolic CO2 into coral skeleton. Nature 228:383

    CAS  PubMed  Google Scholar 

  • Pearse VB, Muscatin L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    CAS  Google Scholar 

  • Pierce SK, Biron RW, Rumpho ME (1996) Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture. J Exp Biol 199:2323–2330

    CAS  PubMed  Google Scholar 

  • Pierce SK, Curtis NE, Hanten JJ, Boerner SL, Schwartz JA (2007) Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43:57–64

    CAS  Google Scholar 

  • Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. Am Nat 110:731–742

    Google Scholar 

  • Putt M (1990) Metabolism of photosynthate in the chloroplast retaining ciliate Laboea strobila. Mar Ecol Prog Ser 60:271–282

    CAS  Google Scholar 

  • Quigg A, Finkel ZV, Irwin AJ, Rosenthal Y, Ho TY et al (2003) The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Nature 425:291–294

    CAS  PubMed  Google Scholar 

  • Raven JA (1997) Phagotrophy in phototrophs. Limnol Oceanogr 42:198–205

    CAS  Google Scholar 

  • Raven JA, Walker DI, Jensen KR, Handley LL, Scrimgeour CM et al (2001) What fraction of the organic carbon in sacoglossans is obtained from photosynthesis by kleptoplastids? An investigation using the natural abundance of stable carbon isotopes. Mar Biol 138:537–545

    CAS  Google Scholar 

  • Raven JA, Beardall J, Flynn K, Maberly SC (2009) Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin’s insectivorous plants. J Exp Bot 60:3975–3987

    CAS  PubMed  Google Scholar 

  • Rees TAV (1989) The green hydra symbiosis and ammonium II. Ammonium assimilation and release by freshly isolated symbionts and cultured algae. Proc R Soc B 235:365–382

    CAS  Google Scholar 

  • Reisser W (1976) The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella sp. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific properties of the physiology and the cytology of the symbiotic unit and their regulation. Arch Microbiol 111:161–170

    CAS  PubMed  Google Scholar 

  • Reisser W (1986) Endosymbiotic associations of freshwater protozoa and algae. Prog Protist 1:195–214

    Google Scholar 

  • Reisser W (1991) Ciliophora as microhabitats of different green algal species: model systems for an ecological concept of symbiosis formation. Mar Microb Food Webs 5:75–80

    Google Scholar 

  • Reisser W (1992) Endosymbiotic associations of algae with freshwater protozoa and invertebrates. In: Reisser W (ed) Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Biopress Limited, Bristol, pp 1–19

    Google Scholar 

  • Reisser W, Benseler W (1981) Comparative studies on photosynthetic enzymes of the symbiotic Chlorella from Paramecium bursaria and other symbiotic and non-symbiotic Chlorella-strains. Arch Microbiol 129:178–180

    CAS  Google Scholar 

  • Reisser W, Kurmeier B (1984) The endosymbiotic unit of Climacostomum virens and Chlorella sp. symbiotic features of the association and host-symbiont regulatory mechanisms. Protistologica 20:265–270

    Google Scholar 

  • Reyes-Prieto A, Moustafa A, Bhattacharya D (2008) Multiple genes of apparent algal origin suggest ciliates may once have been photosynthetic. Curr Biol 18:956–962

    CAS  PubMed  Google Scholar 

  • Riisgaard K, Hansen PJ (2009) Role of food uptake for photosynthesis, growth and survival of the mixotrophic dinoflagellate Dinophysis acuminata. Mar Ecol Prog Ser 381:51–62

    CAS  Google Scholar 

  • Rink S, Kuhl M, Bijma J, Spero HJ (1998) Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar Biol 131:583–595

    Google Scholar 

  • Ritchie RJ, Grant AJ, Eltringham K, Hinde R (1997) Clotrimazole, a model compound for the host release factor of the coral Plesiastrea versipora. Aust J Plant Physiol 24:283–290

    CAS  Google Scholar 

  • Rogerson A, Finlay BJ, Berninger UG (1989) Sequestered chloroplasts in the fresh-water ciliate Strombidium viride (Ciliophora, Oligotrichida). Transac Am Microsc Soc 108:117–126

    Google Scholar 

  • Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123:29–38

    CAS  PubMed  Google Scholar 

  • Rumpho ME, Dastoor FP, Manhart JR, Lee J (2006) The kleptoplast. In: Wise RR, Hoober JK (eds) The structure and function of plastids. Springer, New York, pp 451–475

    Google Scholar 

  • Rumpho ME, Worful JM, Lee J, Kannan K, Tyler MS et al (2008) Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. PNAS 105:17867–17871

    CAS  PubMed  Google Scholar 

  • Ryther JH (1967) Occurrence of red water off Peru. Nature 214:1318–1319

    CAS  Google Scholar 

  • Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204–213

    CAS  PubMed  Google Scholar 

  • Sanchez-Puerta MV, Delwiche CF (2008) A hypothesis for plastid evolution in chromalveolates. J Phycol 44:1097–1107

    Google Scholar 

  • Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2006) Plastid genes in the nonphotosynthetic dinoflagellate Crypthecodinium cohnii. J Phycol 42:46

    Google Scholar 

  • Schnepf E, Elbrachter M (1992) Nutritional strategies in dinoflagellates. A review with emphasis on cell biological aspects. Eur J Protistol 28:3–24

    Google Scholar 

  • Setälä O, Autio R, Kuosa H, Rintala J, Ylöstalo P (2005) Survival and photosynthetic activity of different Dinophysis acuminata populations in the northern Baltic Sea. Harmful Algae 4:337–350

    Google Scholar 

  • Skovgaard A (1998) Role of chloroplast retention in a marine dinoflagellate. Aquat Microb Ecol 15:293–301

    Google Scholar 

  • Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306

    CAS  PubMed  Google Scholar 

  • Smith M, Hansen PJ (2007) Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar Ecol Prog Ser 338:61–70

    Google Scholar 

  • Spero HJ (1982) Phagotrophy in Gymnodinium fungiforme (Pyrrhophyta): the peduncle as an organelle of ingestion. J Phycol 18:356–360

    Google Scholar 

  • Spero HJ, Angel DL (1991) Planktonic sarcodines: microhabitat for oceanic dinoflagellates. J Phycol 27:187–195

    Google Scholar 

  • Spero HJ, Parker SL (1985) Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa and its potential contribution to oceanic primary productivity. J Foraminifer Res 15:273–281

    Google Scholar 

  • Stiven AE (1965) The relationship between size, budding rate, and growth efficiency in three species of hydra. Res Popul Ecol 7:1–15

    Google Scholar 

  • Stoecker DK, Michaels AE (1991) Respiration, photosynthesis and carbon metabolism in planktonic ciliates. Mar Biol 108:441–447

    CAS  Google Scholar 

  • Stoecker DK, Silver MW (1990) Replacement and aging of chloroplasts in Strombidium capitatum (Ciliophora, Oligotrichida). Mar Biol 107:491–502

    Google Scholar 

  • Stoecker DK, Michaels AE, Davis LH (1987) Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326:790–792

    Google Scholar 

  • Stoecker DK, Silver MW, Michaels AE, Davis LH (1988) Obligate mixotrophy in Laboea strobila, a ciliate which retains chloroplasts. Mar Biol 99:415–423

    Google Scholar 

  • Stoecker DK, Sliver MW, Michaels AE, Davis LH (1988–1989) Enslavement of algal chloroplasts by four Strombidium spp. (Ciliophora, Oligotrichida). Mar Microb Food Webs 3:79–100

    Google Scholar 

  • Stoecker DK, Johnson MD, de Vargas C, Not F (2009) Acquired phototrophy in aquatic protists. Aquat Microb Ecol 57:279–310

    Google Scholar 

  • Strom SL (2001) Light-aided digestion, grazing and growth in herbivorous protists. Aquat Microb Ecol 23:253–261

    Google Scholar 

  • Summerer M, Sonntag B, Sommaruga R (2007) An experimental test of the symbiosis specificity between the ciliate Paramecium bursaria and strains of the unicellular green alga Chlorella. Environ Microbiol 9:2117–2122

    CAS  PubMed  Google Scholar 

  • Sutton DC, Hoegh-Guldberg O (1990) Host-zooxanthella interactions in four temperate marine invertebrate symbioses: assessment of effect of host extracts on symbionts. Biol Bull 178:175–186

    Google Scholar 

  • Taylor DL (1967) The occurrence and significance of endosymbiotic chloroplasts in the digestive glands of herbivorous opisthobranchs. J Phycol 3:234–235

    Google Scholar 

  • Taylor FJR, Blackboun DJ, Blackboun J (1971) Red-water ciliate Mesodinium rubrum and its incomplete symbionts—review including new ultrastructural observations. J Fish Res Board Can 28:391–407

    Google Scholar 

  • Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K et al (2000) Phylogenetic analyses indicate that the 19 hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718–729

    CAS  PubMed  Google Scholar 

  • ter Kuile B, Erez J (1987) Uptake of inorganic carbon and internal cycling in symbiont-bearing foraminifera. Mar Biol 94:499–510

    Google Scholar 

  • ter Kuile BH, Erez J (1991) Carbon budgets for two species of benthonic symbiont-bearing foraminifera. Biol Bull 180:489–495

    CAS  Google Scholar 

  • ter Kuile B, Erez J, Lee JJ (1987) The role of feeding in the metabolism of larger symbiont bearing foraminifera. Symbiosis 4:335–350

    Google Scholar 

  • Teugels B, Bouillon S, Veuger B, Middelburg JJ, Koedam N (2008) Kleptoplasts mediate nitrogen acquisition in the sea slug Elysia viridis. Aqua Biol 4:15–21

    Google Scholar 

  • Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017

    CAS  PubMed  Google Scholar 

  • Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    CAS  Google Scholar 

  • Titlyanov EA, Titlyanova TV (2002) Reef-building corals—symbiotic autotrophic organisms: 1. General structure, feeding pattern, and light-dependent distribution in the shelf. Russ J Mar Biol/Biol Morya 28:S1–S15

    Google Scholar 

  • Tonooka Y, Watanabe T (2002) A natural strain of Paramecium bursaria lacking symbiotic algae. Eur J Protistol 38:55–58

    Google Scholar 

  • Trench RK (1971) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenteratesIII. The effects of homogenates of host tissues on the excretion of photosynthetic products in vitro by Zooxanthellae from two marine coelenterates. Proc R Soc Lond B-Biol Sci 177:251–264

    CAS  Google Scholar 

  • Trench RK (1979) Cell biology of plant-animal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 30:485–531

    CAS  Google Scholar 

  • Trench RK, Greene RW, Bystrom BG (1969) Chloroplasts as functional organelles in animal tissues. J Cell Biol 42:404–417

    CAS  PubMed  Google Scholar 

  • Trench RK, Boyle JE, Smith DC (1973) The association between chloroplasts of Codium fragile and the mollusc Elysia viridis II. Chloroplast ultrastructure and photosynthetic carbon fixation in E. viridis. Proc R Soc Lond B-Biol Sci 184:63–81

    CAS  Google Scholar 

  • Uhle ME, Macko SA, Spero HJ, Lea DW, Ruddiman WF et al (1999) The fate of nitrogen in the Orbulina universa foraminifera-symbiont system determined by nitrogen isotope analyses of shell-bound organic matter. Limnol Oceanogr 44:1968–1977

    CAS  Google Scholar 

  • Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    CAS  PubMed  Google Scholar 

  • Vicente VP (1990) Response of sponges with autotrophic endosymbionts during the coral-bleaching episode in Puerto Rico. Coral Reefs 8:199–202

    Google Scholar 

  • Vogelbein WK, Lovko VJ, Shields JD, Reece KS, Mason PL et al (2002) Pfiesteria shumwayae kills fish by micropredation not exotoxin secretion. Nature 418:967–970

    CAS  PubMed  Google Scholar 

  • Wägele M, Johnsen G (2001) Observations on the histology and photosynthetic performance of “solar-powered” opisthobranchs (Mollusca, Gastropoda, Opisthobranchia) containing symbiotic chloroplasts or zooxanthellae. Org Divers Evol 1:193–210

    Google Scholar 

  • Wang JT, Douglas AE (1997) Nutrients, signals, and photosynthate release by symbiotic algae—the impact of taurine on the dinoflagellate alga Symbiodinium from the sea anemone Aiptasia pulchella. Plant Physiol 114:631–636

    CAS  PubMed  Google Scholar 

  • Wang JT, Douglas AE (1999) Essential amino acid synthesis and nitrogen recycling in an alga–invertebrate symbiosis. Mar Biol 135:219–222

    CAS  Google Scholar 

  • Watanabe MW, Suda S, Inouya I, Chihara M (1990) Lepidodinium viride gen et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll A- and B-containing endosymbiont. J Phycol 26:741–751

    Google Scholar 

  • Wilkerson FP, Grunseich G (1990) Formation of blooms by the symbiotic ciliate Mesodinium rubrum: the significance of nitrogen uptake. J Plankton Res 12:973–989

    Google Scholar 

  • Williamson CE (1979) An ultrastructural investigation of algal symbiosis in white and green Spongilla lacustris (L.) (Porifera: Spongillidae). Trans Amer Microscop Soc 98:59–77

    Google Scholar 

  • Yih W, Kim HS, Jeong HA, Myung G, Kim YG (2004) Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat Microb Ecol 36:165–170

    Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    CAS  PubMed  Google Scholar 

  • Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Diane K. Stoecker, Fabrice Not, and Colomban de Vargas for illuminating discussions on AcPh, and Rebecca Gast, Dave Caron, Daniel Sher, George McManus, and Mary Rumpho for their generous image donations. The author would also like to thank three anonymous reviewers for their helpful comments. Preparation of the article was supported by NSF grant OCE-0851269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.D. The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles. Photosynth Res 107, 117–132 (2011). https://doi.org/10.1007/s11120-010-9546-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9546-8

Keywords

Navigation