Skip to main content

Advertisement

Log in

Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

CO2 :

Carbon dioxide

CH4 :

Methane

FdOX :

Oxidized form of ferredoxin

FdRED :

Reduced form of ferredoxin

H2 :

Hydrogen

PS I and PS II:

Photosystem I and photosystem II

LHCs:

Light-harvesting complexes

NGS:

Natural gas reformation reaction

HTWS:

High-temperature thermochemical water splitting

NHTE:

Nuclear high-temperature electrolysis

Nm3 :

Normal cubic meter

TEM:

Transmission electron microscopy

HRTEM:

High-resolution transmission electron microscopy

WOC:

Water-oxidizing complex

References

  • Abraham S (2002) Toward a more secure and cleaner energy future for America: national hydrogen energy roadmap; production, delivery, storage, conversion, applications, public education and outreach. US Department Energy, Washington

    Google Scholar 

  • Adamson AW, Demas JN (1971) New photosensitizer. Tris (2, 2′-bipyridine) ruthenium (II) chloride. J Am Chem Soc 93:1800–1801

    Article  CAS  Google Scholar 

  • Allakhverdiev SI (2012) Photosynthetic and biomimetic hydrogen production. Int J Hydrog Energy 37:8744–8752

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nagata T, Nishihara H, Ramakrishna S (2009) Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems. Photochem Photobiol Sci 8:148–156

    Article  CAS  PubMed  Google Scholar 

  • Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R (2010a) Photosynthetic hydrogen production. J Photochem Photobiol C 11:87–99

    Article  Google Scholar 

  • Allakhverdiev SI, Kreslavski VD, Thavasi V, Zharmukhamedov SK, Klimov VV, Nishihara H, Ramakrishna S, Mimuro M, Carpentier R, Nagata T (2010b) Photosynthetic energy conversion: hydrogen photoproduction by natural and biomimetic systems. In: Mukherjee Amitava (ed) Biomimetics, learning from nature. IN-TECH, Vukovar, pp 49–76

    Google Scholar 

  • Allen JF (1975) Oxygen reduction and optimum production of ATP in photosynthesis. Nature 256:599–600. doi:10.1038/256599a0

    Article  CAS  Google Scholar 

  • Araújo WL, Nunes-Nesi A, Fernie AR (2014) On the role of plant mitochondrial metabolism and its impact on photosynthesis in both optimal and sub-optimal growth conditions. Photosynth Res 119:141–156

    Article  PubMed  Google Scholar 

  • Arnon DI (1959) Conversion of light into chemical energy in photosynthesis. Nature 184:10–20

    CAS  PubMed  Google Scholar 

  • Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–173

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a Probe of Photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay A, Stöckel J, Min H et al (2010) High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nat Commun 1:139

    Article  PubMed  Google Scholar 

  • Björkman O, Demmig-Adams B (1995) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. Ecophysiology photosynthesis. Springer, Berlin, pp 17–47

    Chapter  Google Scholar 

  • Björn LO, Papageorgiou GC, Blankenship RE, Govindjee (2009) A viewpoint: Why chlorophyll a? Photosynth Res 99:85–98. doi:10.1007/s11120-008-9395-x

    Article  PubMed  Google Scholar 

  • Chou LY, Liu R, He W, Geh N, Lin Y, Hou EYF, Wang D, Hou HJM (2012) Direct oxygen and hydrogen production by water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. Int J Hydrog Energy 37:8889–8896

    Article  CAS  Google Scholar 

  • Ciamician G (1912) The photochemistry of the future. Science 36:385–394

  • Concepcion JJ, Jurss JW, Templeton JL, Meyer TJ (2008) Mediator-assisted water oxidation by the ruthenium “blue dimer” cis, cis-[(bpy) 2 (H2O) RuORu (OH2)(bpy) 2] 4+. Proc Natl Acad Sci 105:17632–17635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eberhard S, Finazzi G, Wollman F-A (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515. doi:10.1146/annurev.genet.42.110807.091452

    Article  CAS  PubMed  Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  PubMed  Google Scholar 

  • Ewan BCR, Allen RWK (2005) A figure of merit assessment of the routes to hydrogen. Int J Hydrog Energy 30:809–819

    Article  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K et al (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Briantais J-M, Cerovic Z et al (2000) Steady-state and maximum chlorophyll fluorescence responses to water stress in grapevine leaves: a new remote sensing system. Remote Sens Environ 73:283–297

    Article  Google Scholar 

  • Flexas J, Escalona JM, Evain S et al (2002) Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants. Physiol Plant 114:231–240

    Article  CAS  PubMed  Google Scholar 

  • Freedman A, Cavender-Bares J, Kebabian PL et al (2002) Remote sensing of solar-excited plant fluorescence as a measure of photosynthetic rate. Photosynthetica 40:127–132

    Article  Google Scholar 

  • Gaffron H (1939) Reduction of CO2 with H2 in green plants. Nature 143:204–205

    Article  CAS  Google Scholar 

  • Gafney HD, Adamson AW (1972) Excited state Ru (bipyr) 32 + as an electron-transfer reductant. J Am Chem Soc 94:8238–8239

    Article  CAS  Google Scholar 

  • Garbulsky MF, Filella I, Verger A, Peñuelas J (2013) Photosynthetic light use efficiency from satellite sensors: From global to Mediterranean vegetation. Environ. Exp, Bot

    Google Scholar 

  • Gust D, Moore TA, Moore AL (2009) Solar fuels via artificial photosynthesis. Acc Chem Res 42:1890–1898

    Article  CAS  PubMed  Google Scholar 

  • Hemschemeier A, Melis A, Happe T (2009) Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res 102:523–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huner NPA, Öquist G, Sarhan F (1998) Energy balance and acclimation to light and cold. Trends Plant Sci 3:224–230

    Article  Google Scholar 

  • Imahori H, Mori Y, Matano Y (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83

    Article  CAS  Google Scholar 

  • Iyer A, Del-Pilar J, Kingondu CK et al (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116:6474–6483

    Article  CAS  Google Scholar 

  • Kotay SM, Das D (2008) Biohydrogen as a renewable energy resource-prospects and potentials. Int J Hydrog Energy 33:258–263

    Article  Google Scholar 

  • Limburg J, Vrettos JS, Liable-Sands LM, Rheingold AL, Crabtree RH, Brudvig GW (1999) A functional model for O–O bond formation by the O2-evolving complex in photosystem II. Science 283:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Larson E, Greene N et al (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefining 3:113–123

    Article  CAS  Google Scholar 

  • Maitra U, Lingampalli SR, Rao CNR (2014) Artificial photosynthesis and the splitting of water to generate hydrogen. Curr Sci 106:518–527

    CAS  Google Scholar 

  • Maness P-C, Yu J, Eckert C, Ghirardi ML (2009) Photobiological hydrogen production—prospects and challenges. Microbe Magazine 4(6):275–280

  • Maurino VG, Weber APM (2013) Engineering photosynthesis in plants and synthetic microorganisms. J Exp Bot. doi:10.1093/jxb/ers263

    PubMed  Google Scholar 

  • Maxwell K (2000) Chlorophyll fluorescence–a practical guide. J Exp Bot 51:659–668

    Article  CAS  PubMed  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Najafpour MM (2011) Hollandite as a functional and structural model for the biological water oxidizing complex: manganese-calcium oxide minerals as a possible evolutionary origin for the camn4 cluster of the biological water oxidizing complex. Geomicrobiol J 28:714–718

    Article  CAS  Google Scholar 

  • Najafpour MM, Allakhverdiev SI (2012) Manganese compounds as water oxidizing catalysts for hydrogen production via water splitting: from manganese complexes to nano-sized manganese oxides. Int J Hydrog Energy 37:8753–8764

    Article  CAS  Google Scholar 

  • Najafpour MM, Tabrizi AM, Cecil K (2013) Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. Dalton Trans 42:5085–5091

    Article  CAS  PubMed  Google Scholar 

  • Najafpour MM, Ghobadi MZ, Sedigh DJ, Haghighi B (2014a) Nano-sized layered manganese oxide in a poly-l-glutamic acid matrix: a biomimetic, homogenized, heterogeneous structural model for the water-oxidizing complex in photosystem II. RSC Adv 4:39077–39081

    Article  CAS  Google Scholar 

  • Najafpour MM, Isaloo MA, Eaton-Rye JJ, Tomo T, Nishihara H, Satoh K, Carpentier R, Shen JR, Allakhverdiev SI (2014b) Water exchange in manganese-based water-oxidizing catalysts in photosynthetic systems: from the water-oxidizing complex in photosystem II to nano-sized manganese oxides. Biochim Biophys Acta 1837(9):1395–1410

    Article  CAS  PubMed  Google Scholar 

  • Nam YS, Magyar AP, Lee D et al (2010) Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. Nat Nanotechnol 5:340–344

    Article  CAS  PubMed  Google Scholar 

  • Nath K, Elizabeth J, Poudyal RS et al (2013a) Mobilization of photosystem II-light harvesting complex II supercomplexes during high light illumination and state transitions. Rapid Commun Photosci 2:18–23. doi:10.5857/RCP.2013.2.1.018

    Article  Google Scholar 

  • Nath K, Phee B-K, Jeong S et al (2013b) Age-dependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana. Photosynth Res 117:547–556

    Article  CAS  PubMed  Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767–776

    Article  CAS  PubMed  Google Scholar 

  • Pena MA, Gómez JP, Fierro JLG (1996) New catalytic routes for syngas and hydrogen production. Appl Catal A 144:7–57

    Article  CAS  Google Scholar 

  • Porcar-Castell A (2011) A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. Physiol Plant 143:139–153

    Article  CAS  PubMed  Google Scholar 

  • Rascher U, Damm A, van der Linden S et al (2010) Sensing of photosynthetic activity of crops. Precision crop protection challenge use heterogeneity. Springer, Netherlands, pp 87–99

    Chapter  Google Scholar 

  • Rathmann R, Szklo A, Schaeffer R (2010) Land use competition for production of food and liquid biofuels: an analysis of the arguments in the current debate. Renew Energy 35:14–22

    Article  Google Scholar 

  • Rathmann R, Szklo A, Schaeffer R (2012) Targets and results of the Brazilian biodiesel incentive program-has it reached the promised land? Appl Energy 97:91–100

    Article  Google Scholar 

  • Rey FE, Heiniger EK, Harwood CS (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73:1665–1671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rostrup-Nielsen JR (1984) Sulfur-passivated nickel catalysts for carbon-free steam reforming of methane. J Catal 85:31–43

    Article  CAS  Google Scholar 

  • Schütz K, Happe T, Troshina O et al (2004) Cyanobacterial H2 production-a comparative analysis. Planta 218:350–359

    Article  PubMed  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA et al (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Soukupová J, Cséfalvay L, Urban O et al (2008) Annual variation of the steady-state chlorophyll fluorescence emission of evergreen plants in temperate zone. Funct Plant Biol 35:63–76

    Article  Google Scholar 

  • Suga M, Akita F, Hirata K et al (2015) Native structure of photosystem II at 1.95 A resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

  • Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh J (1999) The photosynthetic process. Concepts photobiology. Springer, Netherlands, pp 11–51

    Chapter  Google Scholar 

  • Williams CR, Bees MA (2014) Mechanistic modeling of sulfur-deprived photosynthesis and hydrogen production in suspensions of chlamydomonas reinhardtii. Biotechnol Bioeng 111:320–335

  • Zarco-Tejada PJ, Pushnik JC, Dobrowski S, Ustin SL (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 84:283–294

    Article  Google Scholar 

Download references

Acknowledgments

MMN is grateful to the Institute for Advanced Studies in Basic Sciences, and the National Elite Foundation for financial support. SEB is grateful to Young Researchers and Elite Club for financial support. ET was supported by Academy of Finland and Nordic Energy Research (Aquafeed project). HGN was supported by Institute for Basic Sciences (IBS-R013-D1-2015-a00), Korea. This work was also supported by a grant-in-aid for Specially Promoted Research No. 24000018 from JSPS, MEXT (Japan) to JRS, and by a grant from the Russian Science Foundation (No: 14-14-00039) to SIA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Allakhverdiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, K., Najafpour, M.M., Voloshin, R.A. et al. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies. Photosynth Res 126, 237–247 (2015). https://doi.org/10.1007/s11120-015-0139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0139-4

Keywords

Navigation