Skip to main content
Log in

Distinguishing quantum channels via magic squares game

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the effect of quantum memory in magic squares game when played in quantum domain. We consider different noisy quantum channels and analyze their influence on the magic squares quantum pseudo-telepathy game. We show that the probability of success can be used to distinguish the quantum channels. It is seen that the mean success probability decreases with increase of quantum noise. Where as the mean success probability increases with increase of quantum memory. It is also seen that the behaviour of amplitude damping and phase damping channels is similar. On the other hand, the behaviour of depolarizing channel is similar to the flipping channels. Therefore, the probability of success of the game can be used to distinguish the quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmusen E.: Games and Information: An Introduction to Game Theory. Blackwell, Cambridge (1989)

    MATH  Google Scholar 

  2. Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Meyer D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  4. Eisert J., Wilkens M., Lewenstein M.: Quantum games and quantum strategies. Phys. Rev. Lett. 83, 3077–3080 (1999)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  5. Marinatto L., Weber T.: A quantum approach to static games of complete information. Phys. Lett. A 272, 291–303 (2000)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  6. Flitney A.P., Abbott D.: Quantum games with decoherence. J. Phys. A 38, 449–459 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Cheon T., Iqbal A.: Bayesian Nash equilibria and Bell inequalities. J. Phys. Soc. Jpn. 77, 024801 (2008)

    Article  ADS  Google Scholar 

  8. Ramzan M., Nawaz A., Toor A.H., Khan M.K.: The effect of quantum memory on quantum games. J. Phys. A: Math. Theor. 41, 055307 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  9. Iqbal A., Cheon T., Abbott D.: Probabilistic analysis of three player symmetric games played using EPR settings. Phys. Lett. A 372, 6564–6577 (2008)

    Article  CAS  MathSciNet  ADS  Google Scholar 

  10. Eisert J., Wilkens M.: Quantum games. J. Mod. Opt. 47, 2543–2556 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  11. Ramzan M., Khan M.K.: Noise effects in a three-player prisoner’s dilemma quantum game. J. Phys. A: Math. Theor. 41, 435302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  12. Ramzan M., Khan M.K.: Communication aspects of a three-player prisoner’s dilemma quantum game. J. Phys. A: Math. Theor. 42, 025301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  13. Iqbal A., Toor A.H.: Evolutionarily stable strategies in quantum games. Phys. Lett. A 280, 249–256 (2001)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  14. Flitney A.P., Abbott D.: Quantum version of the Monty Hall problem. Phys. Rev. A 65, 062318 (2002)

    Article  ADS  Google Scholar 

  15. D’Ariano G.M., Gill R.D., Keyl M., Kuemmerer B., Maassen H., Werner R.F.: The quantum Monty Hall problem. Quant. Inf. Comp. 2, 355–366 (2002)

    MATH  Google Scholar 

  16. Iqbal A., Toor A.H.: Quantum mechanics gives stability to Nash equilibrium. Phys. Rev. A 65, 022036 (2002)

    MathSciNet  Google Scholar 

  17. Iqbal A., Toor A.H.: Quantum cooperative games. Phys. Lett. A 293, 103–108 (2002)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  18. Johnson N.F.: Playing a quantum game with a corrupt source. Phys. Rev. A 63, 020302(R) (2001)

    ADS  Google Scholar 

  19. Gawron P., Sladkowski J.: Noise effects in quantum magic squares game. Int. J. Quant. Inf. 6, 667–673 (2008)

    Article  MATH  Google Scholar 

  20. Lee C.F., Johnson N.: Exploiting randomness in quantum information processing. Phys. Lett. A 301, 343–349 (2002)

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  21. Brassard G., Broadbent A., Tapp A.: Quantum pseudo-telepathy. Found. Phys. 35, 1877–1907 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. de Sousa P.B.M., Ramos R.V.: Multiplayer quantum games and its application as access controller in architecture of quantum computers. Quant. Inf. Process. 7, 125–135 (2008)

    Article  MATH  Google Scholar 

  23. James, M., Chappell, I.A., Lohe, M.A., von Smekal, L.: An analysis of the quantum penny flip game using geometric algebra. quant-ph/0902.4296 (2009)

  24. Steane A.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MATH  CAS  MathSciNet  ADS  PubMed  Google Scholar 

  25. Deutsch D., Ekert A., Josza R., Macchiavello C., Popescu S., Sanpera A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Chen L.K., Ang H., Kiang D., Kwek L.C., Lo C.F.: Quantum prisoner dilemma under decoherence. Phys. Lett. A 316, 317–323 (2003)

    Article  MATH  CAS  ADS  Google Scholar 

  27. Macchiavello C., Palma G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  28. Yeo Y., Skeen A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  29. Karimipour V. et al.: Entanglement and optimal strings of qubits for memory channels. Phys. Rev. A 74, 062311 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. Bowen G., Mancini S.: Quantum channels with a finite memory. Phys. Rev. A 69, 01236 (2004)

    Google Scholar 

  31. Kretschmann D., Werner R.F.: Quantum channels with memory. Phys. Rev. A 72, 062323 (2005)

    Article  ADS  Google Scholar 

  32. Aravind P.K.: Quantum mysteries revisited again. Am. J. Phys. 72, 1303–1307 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  33. Mermin N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  MATH  MathSciNet  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramzan, M., Khan, M.K. Distinguishing quantum channels via magic squares game. Quantum Inf Process 9, 667–679 (2010). https://doi.org/10.1007/s11128-009-0155-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-009-0155-4

Keywords

Navigation