Skip to main content
Log in

Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study proposes two new coding functions for a GHZ state and a GHZ-like state, respectively. Based on these coding functions, two fault tolerant deterministic quantum communication (DQC) protocols are proposed. Each of the new DQC’s is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. The sender can use the proposed coding functions to encode his/her message, and the receiver can perform the Bell measurement to obtain the sender’s message. In comparison to the existing fault tolerant DQC protocols over collective-noise channels, the proposed protocols provide the best qubit efficiency. Moreover, the proposed protocols are also free from the ordinary eavesdropping and the information leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Presented at the proceedings of IEEE international conference on computers systems and signal processing, Bangalore India (1984)

  2. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100 % qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Article  Google Scholar 

  3. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum 15(6), 1602–1606 (2009)

    Article  Google Scholar 

  4. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans. Dependable Secur. 4(1), 71–80 (2007)

    Article  MathSciNet  Google Scholar 

  5. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 61(3), 785–790 (2011)

    Google Scholar 

  6. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21(11), 2097–2100 (2004)

    Article  ADS  Google Scholar 

  7. Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quantum Inf. 3(3), 555–560 (2005)

    Article  MATH  Google Scholar 

  8. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D At. Mol. Opt. Plasma Phys. 61(3), 779–783 (2011)

    Google Scholar 

  9. Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18–21 (2005)

    Article  ADS  Google Scholar 

  10. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Google Scholar 

  11. Hwang, T., Li, C.M., Lee, N.Y.: Secure direct communication using deterministic BB84 protocol. Int. J. Mod. Phys. C 19(4), 625–635 (2008)

    Article  ADS  MATH  Google Scholar 

  12. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A 101(3), 357–368 (2002)

    ADS  Google Scholar 

  13. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)

    Article  ADS  Google Scholar 

  14. Wang, J., Zhang, Q., Tang, C.-J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  MATH  Google Scholar 

  15. Tsai, C.W., Hwang, T.: New deterministic quantum communication via symmetric W state. Opt. Commun. 283(21), 4397–4400 (2010)

    Article  ADS  Google Scholar 

  16. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: Quantum secure communication using a class of three-particle W state. Commun. Theor. Phys. 50(2), 359 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. Dong, L., Xiu, X.-M., Gao, Y.-J., Chi, F.: Quantum secure direct communication using W state. Commun. Theor. Phys. 49(6), 1495 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  18. Cao, H.-J., Song, H.-S.: Quantum secure direct communication with W state. Chin. Phys. Lett. 23(2), 290 (2006)

    Article  ADS  Google Scholar 

  19. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Article  ADS  Google Scholar 

  20. Kempe, J., Bacon, D., Lidar, D., Whaley, K.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63(4), 042307 (2001)

    Article  ADS  Google Scholar 

  21. Lidar, D.A., Bacon, D., Kempe, J., Whaley, K.B.: Protecting quantum information encoded in decoherence-free states against exchange errors. Phys. Rev. A 61(5), 052307 (2000)

    Article  ADS  Google Scholar 

  22. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79(17), 3306 (1997)

    Article  ADS  Google Scholar 

  23. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental verification of decoherence-free subspaces. Science 290(5491), 498–501 (2000)

    Article  ADS  Google Scholar 

  24. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92(1), 017901 (2004)

    Article  ADS  Google Scholar 

  25. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett-Brassard 1984 protocol against collective noise. Phys. Rev. A 80(3), 032321 (2009)

    Article  ADS  Google Scholar 

  26. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun. 282(20), 4171–4174 (2009)

    Article  ADS  Google Scholar 

  27. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum Inf. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  28. Li, C.Y., Li, Y.S.: Fault-tolerate quantum key distribution over a collective-noise channel. Int. J. Quantum Inf. 8(7), 1101–1109 (2010)

    Article  MATH  Google Scholar 

  29. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A 75(2), 020301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A 361(1), 233–238 (2006)

    Article  ADS  Google Scholar 

  31. Sun, Y., Wen, Q.Y., Zhu, F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun. 283(1), 181–183 (2010)

    Article  ADS  Google Scholar 

  32. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun. 283(15), 3099–3103 (2010)

    Article  ADS  Google Scholar 

  33. Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process. 11(1), 113–122 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys. 54(3), 496–501 (2011)

    Google Scholar 

  35. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. 12(6), 2131–2142 (2013)

    Google Scholar 

  37. Dong, L., Xiu, X.M., Gao, Y.J., Chi, F.: Deterministic secure quantum communication against collective-dephasing noise by using EPR pairs and auxiliary photons. Opt. Commun. 282(8), 1688–1690 (2009)

    Article  ADS  Google Scholar 

  38. Gu, B., Pei, S.X., Song, B., Zhong, K.: Deterministic secure quantum communication over a collective-noise channel. Sci. China Ser. G 52(12), 1913–1918 (2009)

    Article  Google Scholar 

  39. Dong, L., Xiu, X.-M., Gao, Y.-J., Ren, Y.-P., Liu, H.-W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284(3), 905–908 (2011)

    Article  ADS  Google Scholar 

  40. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Controlled teleportation of a multi-photon GHZ polarization-entangled state using linear optical elements. Eur. Phys. J. D 61(2), 493–498 (2011)

    Article  ADS  Google Scholar 

  41. Wang, A.M.: Combined and controlled remote implementations of partially unknown quantum operations of multiqubits using Greenberger–Horne–Zeilinger states. Phys. Rev. A 75(6), 062323 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  42. Jiang, M., Dong, D.: An efficient scheme for multi-party quantum state sharing of an arbitrary multi-qubit state with one GHZ channel. Quantum Inf. Process. 12(2), 841–851 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Shannon, C.E.: Communication theory of secrecy system. Bell Syst. Tech. J. 28, 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  45. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  46. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

  47. Hwang, T., Hwang, C.-C., Yang, C.-W., Li, C.-M.: Revisiting Deng et al’.s multiparty quantum secret sharing protocol. Int. J. Theor. Phys. 50(9), 2790–2798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on ”quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers for their very valuable comments, which greatly enhanced the clarity of this paper. We would also like to thank the National Science Council of Republic of China, for the financial support of this research under Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, CW., Tsai, CW. & Hwang, T. Fault tolerant deterministic quantum communications using GHZ states over collective-noise channels. Quantum Inf Process 12, 3043–3055 (2013). https://doi.org/10.1007/s11128-013-0582-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0582-0

Keywords

Navigation