Skip to main content
Erschienen in: Quantum Information Processing 10/2013

01.10.2013

Multiparty-controlled joint remote state preparation

verfasst von: Dong Wang, Liu Ye

Erschienen in: Quantum Information Processing | Ausgabe 10/2013

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we present a novel and efficient information-processing way, multiparty-controlled joint remote state preparation (MCJRSP), to transmit quantum information from many senders to one distant receiver via the control of many agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbitrary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then extend to generalize an arbitrary two-particle state scenario. Notably, different from conventional joint remote state preparation, the desired states cannot be recovered but all of agents collaborate together. Besides, both successful probability and classical information cost are worked out, the relations between success probability and the employed entanglement are revealed, the case of many-particle states is generalized briefly, and the experimental feasibility of our schemes is analysed via an all-optical framework at last. And we argue that our proposal might be of importance to long-distance communication in prospective quantum networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum communication complexity. Phys. Rev. A 62(1), 012313 (2000)ADSCrossRef
2.
Zurück zum Zitat Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 015302 (2000)CrossRef Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 015302 (2000)CrossRef
3.
Zurück zum Zitat Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)ADSCrossRef
4.
Zurück zum Zitat Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87(19), 197901 (2001)ADSCrossRef
5.
Zurück zum Zitat Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADSCrossRef Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)ADSCrossRef
6.
Zurück zum Zitat Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADSCrossRef Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90(5), 057901 (2003)ADSCrossRef
7.
Zurück zum Zitat Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73(6), 062301 (2006)ADSCrossRef Kurucz, Z., Adam, P., Janszky, J.: General criterion for oblivious remote state preparation. Phys. Rev. A 73(6), 062301 (2006)ADSCrossRef
8.
Zurück zum Zitat Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef
9.
Zurück zum Zitat An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef
10.
Zurück zum Zitat Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87(3), 30006 (2009)ADSCrossRef Liu, J.M., Feng, X.L., Oh, C.H.: Remote preparation of arbitrary two- and three-qubit states. EPL 87(3), 30006 (2009)ADSCrossRef
12.
Zurück zum Zitat Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)ADSCrossRef Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)ADSCrossRef
13.
Zurück zum Zitat Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)ADSCrossRef Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)ADSCrossRef
14.
Zurück zum Zitat Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quant. Inf. 6(3), 485–491 (2008)CrossRefMATH Yan, F.L., Zhang, G.H.: Remote preparation of the two-particle state. Int. J. Quant. Inf. 6(3), 485–491 (2008)CrossRefMATH
15.
Zurück zum Zitat Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)ADSCrossRef Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)ADSCrossRef
16.
Zurück zum Zitat Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50(9), 2748–2757 (2011)CrossRefMathSciNetMATH Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50(9), 2748–2757 (2011)CrossRefMathSciNetMATH
17.
Zurück zum Zitat Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)ADSCrossRef Peng, X.H., Zhu, X.W., Fang, X.M., Feng, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271–276 (2003)ADSCrossRef
18.
Zurück zum Zitat Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)ADSCrossRef Xiang, G.Y., Li, J., Bo, Y., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72(1), 012315 (2005)ADSCrossRef
19.
Zurück zum Zitat Peters, N.A., et al.: Remote State Preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)ADSCrossRef Peters, N.A., et al.: Remote State Preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(14), 150502 (2005)ADSCrossRef
20.
Zurück zum Zitat Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)ADSCrossRef Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76(2), 022308 (2007)ADSCrossRef
21.
Zurück zum Zitat Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281(6), 1751–1754 (2008)ADSCrossRef Wu, W., Liu, W.T., Ou, B.Q., Chen, P.X., Li, C.Z.: Remote state preparation with classically correlated state. Opt. Commun. 281(6), 1751–1754 (2008)ADSCrossRef
22.
Zurück zum Zitat Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)ADSCrossRef Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81(4), 042301 (2010)ADSCrossRef
23.
Zurück zum Zitat Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719–3724 (2007)ADSCrossRef
24.
Zurück zum Zitat An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41(9), 095501 (2008)ADSCrossRef
25.
Zurück zum Zitat Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)CrossRefMATH Bich, C.T., Don, N.V., An, N.B.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)CrossRefMATH
26.
Zurück zum Zitat An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)ADSCrossRef An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283(20), 4113–4117 (2010)ADSCrossRef
27.
Zurück zum Zitat Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11(3), 751–767 (2012)MathSciNetCrossRefMATH Luo, M.X., Chen, X.B., Yang, Y.X., Niu, X.X.: Experimental architecture of joint remote state preparation. Quantum Inf. Process. 11(3), 751–767 (2012)MathSciNetCrossRefMATH
28.
Zurück zum Zitat An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009)ADSCrossRef An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B At. Mol. Opt. Phys. 42(12), 125501 (2009)ADSCrossRef
29.
Zurück zum Zitat Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)MathSciNetADSCrossRef Zha, X.W., Song, H.Y.: Remote preparation of a two-particle state using a four-qubit cluster state. Opt. Commun. 284(5), 1472–1474 (2011)MathSciNetADSCrossRef
30.
Zurück zum Zitat Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44(25), 255304 (2011)MathSciNetADSCrossRef Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote preparation of an arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44(25), 255304 (2011)MathSciNetADSCrossRef
31.
Zurück zum Zitat Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)MathSciNetCrossRefMATH Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51(11), 3575–3586 (2012)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. doi:10.1007/s11128-013-0530-z (2013) Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. doi:10.​1007/​s11128-013-0530-z (2013)
33.
Zurück zum Zitat Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44(7), 075501 (2011)ADSCrossRef Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B At. Mol. Opt. Phys. 44(7), 075501 (2011)ADSCrossRef
34.
Zurück zum Zitat Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)ADSCrossRefMATH Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12(2), 997–1009 (2013)ADSCrossRefMATH
35.
Zurück zum Zitat Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)ADSCrossRefMATH Chen, Q.Q., Xia, Y., Song, J., An, N.B.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374(44), 4483–4487 (2010)ADSCrossRefMATH
36.
Zurück zum Zitat Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSCrossRef Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)ADSCrossRef
37.
Zurück zum Zitat Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)ADSCrossRef Chen, Q.Q., Xia, Y., An, N.B.: Joint remote preparation of an arbitrary three-qubit state via EPR-type pairs. Opt. Commun. 284, 2617–2621 (2011)ADSCrossRef
38.
Zurück zum Zitat Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)MathSciNetCrossRefMATH Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51(5), 1647–1654 (2012)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45(33), 335306 (2012)CrossRef Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein–Podolsky–Rosen pairs with a passive receiver. J. Phys. A Math. Theor. 45(33), 335306 (2012)CrossRef
40.
Zurück zum Zitat Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44(9), 095501 (2011)ADSCrossRef Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B At. Mol. Opt. Phys. 44(9), 095501 (2011)ADSCrossRef
41.
Zurück zum Zitat An, N.B., Bich, C.T., Don, N.V.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44(13), 135506 (2011) An, N.B., Bich, C.T., Don, N.V.: Joint remote preparation of four-qubit cluster-type states revisited. J. Phys. B At. Mol. Opt. Phys. 44(13), 135506 (2011)
42.
Zurück zum Zitat Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-Qubit chi-state. Int. J. Theor. Phys. 51(10), 3027–3036 (2012)MathSciNetCrossRefMATH Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-Qubit chi-state. Int. J. Theor. Phys. 51(10), 3027–3036 (2012)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)MathSciNetADSCrossRefMATH Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)MathSciNetADSCrossRefMATH
44.
Zurück zum Zitat Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)MathSciNetCrossRefMATH Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A: Math. Theor. 45(21), 215305 (2012)ADSCrossRef Zhou, P.: Joint remote preparation of an arbitrary m-qudit state with a pure entangled quantum channel via positive operator-valued measurement. J. Phys. A: Math. Theor. 45(21), 215305 (2012)ADSCrossRef
46.
Zurück zum Zitat Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)CrossRefMATH Zhou, P., Li, H.W., Long, L.R.: Probabilistic multiparty joint remote preparation of an arbitrary m-qubit state with a pure entangled channel against collective noise. Int. J. Theor. Phys. 52(3), 849–861 (2013)CrossRefMATH
47.
Zurück zum Zitat Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)ADSCrossRef Yang, C.P., Chu, S.I., Han, S.Y.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70(2), 022329 (2004)ADSCrossRef
48.
Zurück zum Zitat Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSCrossRef Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)ADSCrossRef
49.
Zurück zum Zitat Han, C., Xue, P., Guo, G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A 72(3), 034301 (2005)ADSCrossRef Han, C., Xue, P., Guo, G.C.: Multipartite entanglement preparation and quantum communication with atomic ensembles. Phys. Rev. A 72(3), 034301 (2005)ADSCrossRef
50.
Zurück zum Zitat Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)ADSCrossRef Galiautdinov, A.: Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits. Phys. Rev. A 75(5), 052303 (2007)ADSCrossRef
51.
Zurück zum Zitat Ostatnický, T., Shelykh, I.A., Kavokin, A.V.: Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)ADSCrossRef Ostatnický, T., Shelykh, I.A., Kavokin, A.V.: Theory of polarization-controlled polariton logic gates. Phys. Rev. B 81(12), 125319 (2010)ADSCrossRef
52.
Zurück zum Zitat Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)MathSciNetADSCrossRef Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60(14), 1351–1354 (1988)MathSciNetADSCrossRef
53.
Zurück zum Zitat Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11–20 (1990)MathSciNetADSCrossRef Aharonov, Y., Vaidman, L.: Properties of a quantum system during the time interval between two measurements. Phys. Rev. A 41(1), 11–20 (1990)MathSciNetADSCrossRef
55.
Zurück zum Zitat Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)ADSCrossRef Grudka, A., Wójcik, A.: Projective measurement of the two-photon polarization state: linear optics approach. Phys. Rev. A 66(6), 064303 (2002)ADSCrossRef
56.
Zurück zum Zitat Loock, P.V., Lütkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69(1), 012302 (2004)ADSCrossRef Loock, P.V., Lütkenhaus, N.: Simple criteria for the implementation of projective measurements with linear optics. Phys. Rev. A 69(1), 012302 (2004)ADSCrossRef
57.
Zurück zum Zitat Takeoka, M., Sasaki, M., Loock, P.V., Lütkenhaus, N.: Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71(2), 022318 (2005)ADSCrossRef Takeoka, M., Sasaki, M., Loock, P.V., Lütkenhaus, N.: Implementation of projective measurements with linear optics and continuous photon counting. Phys. Rev. A 71(2), 022318 (2005)ADSCrossRef
58.
Zurück zum Zitat Takeoka, M., Sasaki, M., Lütkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 040502 (2006)ADSCrossRef Takeoka, M., Sasaki, M., Lütkenhaus, N.: Binary projective measurement via linear optics and photon counting. Phys. Rev. Lett. 97(4), 040502 (2006)ADSCrossRef
59.
Zurück zum Zitat Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58–61 (1994)ADSCrossRef Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73(1), 58–61 (1994)ADSCrossRef
60.
Zurück zum Zitat Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)ADSCrossRef Knill, E., Laflamme, R., Milburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature (London) 409, 46–52 (2001)ADSCrossRef
61.
Zurück zum Zitat Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)ADSCrossRef Pittman, T.B., Fitch, M.J., Jacobs, B.C., Franson, J.D.: Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68(3), 032316 (2003)ADSCrossRef
62.
Zurück zum Zitat O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature (London) 426, 264–267 (2003)ADSCrossRef O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Branning, Demonstration of an all-optical quantum controlled-NOT gate. Nature (London) 426, 264–267 (2003)ADSCrossRef
63.
Zurück zum Zitat Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)ADSCrossRef Gasparoni, S., Pan, J.W., Walther, P., Rudolph, T., Zeilinger, A.: Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004)ADSCrossRef
Metadaten
Titel
Multiparty-controlled joint remote state preparation
verfasst von
Dong Wang
Liu Ye
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2013
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-013-0595-8

Weitere Artikel der Ausgabe 10/2013

Quantum Information Processing 10/2013 Zur Ausgabe

Neuer Inhalt