Skip to main content
Erschienen in: Quantum Information Processing 6/2015

01.06.2015

Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states

Erschienen in: Quantum Information Processing | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Three entanglement concentration protocols (ECPs) are proposed. The first ECP and a modified version of that are shown to be useful for the creation of maximally entangled cat and GHZ-like states from their non-maximally entangled counterparts. The last two ECPs are designed for the creation of maximally entangled \((n+1)\)-qubit state \(\frac{1}{\sqrt{2}}\left( |\Psi _{0}\rangle |0\rangle +|\Psi _{1}\rangle |1\rangle \right) \) from the partially entangled \((n+1)\)-qubit normalized state \(\alpha |\Psi _{0}\rangle |0\rangle +\beta |\Psi _{1}\rangle |1\rangle ,\) where \(\langle \Psi _{1}|\Psi _{0}\rangle =0\) and \(|\alpha |\ne \frac{1}{\sqrt{2}}\). It is also shown that W, GHZ, GHZ-like, Bell and cat states and specific states from the nine SLOCC-nonequivalent families of 4-qubit entangled states can be expressed as \(\frac{1}{\sqrt{2}}\left( |\Psi _{0}\rangle |0\rangle +|\Psi _{1}\rangle |1\rangle \right) \), and consequently, the last two ECPs proposed here are applicable to all these states. Quantum circuits for the implementation of the proposed ECPs are provided, and it is shown that the proposed ECPs can be realized using linear optics. The efficiency of the ECPs is studied using a recently introduced quantitative measure (Sheng et al., Phys Rev A 85:012307, 2012). Limitations of the measure are also reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this paper, we have used \(|\psi ^{\pm }\rangle =\frac{|00\rangle \pm |11\rangle }{\sqrt{2}}\) and \(|\phi ^{\pm }\rangle =\frac{|01\rangle \pm |10\rangle }{\sqrt{2}}\). However, it may be noted that the opposite convention (i.e., \(|\phi ^{\pm }\rangle =\frac{|00\rangle \pm |11\rangle }{\sqrt{2}}\) and \(|\psi ^{\pm }\rangle =\frac{|01\rangle \pm |10\rangle }{\sqrt{2}}\)), is also frequently used in literature.
 
2
The swapping operation that changes the particle sequence as \(12345\rightarrow 15234\) can be viewed as a sequence of three conventional SWAP gates that work as follows: \(12345\rightarrow 15342\rightarrow 15243\rightarrow 15234\).
 
3
Here, \(U_{2,n+2}|\psi _{6}\rangle \) denotes that a single-qubit operation \(U_{2}\) operates on \((n+2)\)-th qubit of \(|\psi _{6}\rangle \) and identity operators operate on the rest of the qubits.
 
Literatur
1.
Zurück zum Zitat Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)ADS Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000)ADS
2.
Zurück zum Zitat Gupta, M., Pathak, A.: A scheme for distributed quantum search through simultaneous state transfer mechanism. Ann. Phys. 16, 791–797 (2007)MATH Gupta, M., Pathak, A.: A scheme for distributed quantum search through simultaneous state transfer mechanism. Ann. Phys. 16, 791–797 (2007)MATH
3.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMATHMathSciNet Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)ADSMATHMathSciNet
4.
Zurück zum Zitat Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMATHMathSciNet Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)ADSMATHMathSciNet
6.
Zurück zum Zitat Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADS Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADS
7.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADS Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADS
8.
Zurück zum Zitat Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Info. 10, 1241009 (2012)MathSciNet Shukla, C., Pathak, A., Srikanth, R.: Beyond the Goldenberg-Vaidman protocol: secure and efficient quantum communication using arbitrary, orthogonal, multi-particle quantum states. Int. J. Quantum Info. 10, 1241009 (2012)MathSciNet
9.
Zurück zum Zitat Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADS Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)ADS
10.
Zurück zum Zitat Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADS Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)ADS
11.
Zurück zum Zitat Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)ADS Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)ADS
12.
Zurück zum Zitat Bandyopadhyay, S.: Qubit-and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)ADS Bandyopadhyay, S.: Qubit-and entanglement-assisted optimal entanglement concentration. Phys. Rev. A 62, 032308 (2000)ADS
13.
Zurück zum Zitat Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADS Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)ADS
14.
Zurück zum Zitat Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADS Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)ADS
15.
Zurück zum Zitat Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADS Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)ADS
16.
Zurück zum Zitat Sheng, Y.-B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)CrossRefADSMATHMathSciNet Sheng, Y.-B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776–1820 (2013)CrossRefADSMATHMathSciNet
17.
Zurück zum Zitat Gu, Y.-J., Li, W.-D., Guo, G.-C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)ADS Gu, Y.-J., Li, W.-D., Guo, G.-C.: Protocol and quantum circuits for realizing deterministic entanglement concentration. Phys. Rev. A 73, 022321 (2006)ADS
18.
Zurück zum Zitat Deng, F.-G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADS Deng, F.-G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)ADS
19.
Zurück zum Zitat Sheng, Y.-B., Zhou, L., Zhao, S.-M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADS Sheng, Y.-B., Zhou, L., Zhao, S.-M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)ADS
20.
Zurück zum Zitat He, L.-Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298–299, 260–266 (2013) He, L.-Y., Cao, C., Wang, C.: Entanglement concentration for multi-particle partially entangled W state using nitrogen vacancy center and microtoroidal resonator system. Opt. Commun. 298–299, 260–266 (2013)
21.
Zurück zum Zitat Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965–3969 (2013)MATHMathSciNet Choudhury, B.S., Dhara, A.: A three-qubit state entanglement concentration protocol assisted by two-qubit systems. Int. J. Theor. Phys. 52, 3965–3969 (2013)MATHMathSciNet
22.
Zurück zum Zitat Zhou, L., Wang, X.-F., Sheng, Y.-B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)MATH Zhou, L., Wang, X.-F., Sheng, Y.-B.: Efficient entanglement concentration for arbitrary less-entangled N-atom GHZ state. Int. J. Theor. Phys. 53, 1752–1766 (2014)MATH
23.
Zurück zum Zitat Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Info. Process. 12, 2577–2585 (2013)MATHMathSciNet Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Info. Process. 12, 2577–2585 (2013)MATHMathSciNet
24.
Zurück zum Zitat Xu, T.-T., Xiong, W., Ye, L.: An efficient scheme for entanglement concentration of arbitrary four-photon states. Int. J. Theor. Phys. 52, 2981–2990 (2013)MATHMathSciNet Xu, T.-T., Xiong, W., Ye, L.: An efficient scheme for entanglement concentration of arbitrary four-photon states. Int. J. Theor. Phys. 52, 2981–2990 (2013)MATHMathSciNet
25.
Zurück zum Zitat Zhao, S.-Y., Liu, J., Zhou, L., Sheng, Y.-B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Info. Process. 12, 3633–3647 (2013)ADSMATHMathSciNet Zhao, S.-Y., Liu, J., Zhou, L., Sheng, Y.-B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Info. Process. 12, 3633–3647 (2013)ADSMATHMathSciNet
26.
Zurück zum Zitat Zhou, L., Sheng, Y.-B., Cheng, W.-W., Gong, L.-Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Info. Process. 12, 1307–1320 (2013)ADSMATHMathSciNet Zhou, L., Sheng, Y.-B., Cheng, W.-W., Gong, L.-Y., Zhao, S.-M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Info. Process. 12, 1307–1320 (2013)ADSMATHMathSciNet
27.
Zurück zum Zitat Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)ADS Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)ADS
28.
Zurück zum Zitat Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)CrossRefADS Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003)CrossRefADS
29.
Zurück zum Zitat Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)ADS Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)ADS
30.
Zurück zum Zitat Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)ADS Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)ADS
31.
Zurück zum Zitat Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNet Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two ways. Phys. Rev. A 62, 062314 (2000)ADSMathSciNet
32.
Zurück zum Zitat Banerjee, A., Patel, K., Pathak, A.: Comment on quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507–510 (2011)MATHMathSciNet Banerjee, A., Patel, K., Pathak, A.: Comment on quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 50, 507–510 (2011)MATHMathSciNet
33.
Zurück zum Zitat Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)ADSMathSciNet Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)ADSMathSciNet
34.
Zurück zum Zitat Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)MATHMathSciNet Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2009)MATHMathSciNet
35.
Zurück zum Zitat Verstraete, F., Dehaene, J., Moor, B.De, Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNet Verstraete, F., Dehaene, J., Moor, B.De, Verschelde, H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)ADSMathSciNet
37.
Zurück zum Zitat Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105, 100507 (2010)ADSMathSciNet Borsten, L., Dahanayake, D., Duff, M.J., Marrani, A., Rubens, W.: Four-qubit entanglement classification from string theory. Phys. Rev. Lett. 105, 100507 (2010)ADSMathSciNet
38.
Zurück zum Zitat Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)ADSMathSciNet Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51, 112201 (2010)ADSMathSciNet
39.
Zurück zum Zitat Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADS Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)ADS
40.
Zurück zum Zitat Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)ADS Romero, J.L., Roa, L., Retamal, J.C., Saavedra, C.: Entanglement purification in cavity QED using local operations. Phys. Rev. A 65, 052319 (2002)ADS
41.
Zurück zum Zitat Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Info Process. 12, 2087–2101 (2013)ADSMATH Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Info Process. 12, 2087–2101 (2013)ADSMATH
42.
Zurück zum Zitat Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Info. Process. 13, 825–838 (2014)ADSMATHMathSciNet Ren, B.C., Wei, H.R., Li, T., Hua, M., Deng, F.G.: Optimal multipartite entanglement concentration of electron-spin states based on charge detection and projection measurements. Quantum Info. Process. 13, 825–838 (2014)ADSMATHMathSciNet
43.
Zurück zum Zitat Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)ADS Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)ADS
44.
Zurück zum Zitat Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADS Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)ADS
45.
Zurück zum Zitat Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Info. Process. 12, 1885–1895 (2013)ADSMATH Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Info. Process. 12, 1885–1895 (2013)ADSMATH
46.
Zurück zum Zitat Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507–3513 (2013) Sheng, Y.B., Liu, J., Zhao, S.Y., Zhou, L.: Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin. Sci. Bull. 58, 3507–3513 (2013)
47.
Zurück zum Zitat Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B 43, 095508 (2010)ADS Samal, J.R., Gupta, M., Panigrahi, P.K., Kumar, A.: Non-destructive discrimination of Bell states by NMR using a single ancilla qubit. J. Phys. B 43, 095508 (2010)ADS
48.
Zurück zum Zitat Černoch, A., Soubusta, J., Bartůšková, L., Dušek, M., Fiurášek, J.: Experimental realization of linear-optical partial SWAP gates. Phys. Rev. Lett. 100, 180501 (2008) Černoch, A., Soubusta, J., Bartůšková, L., Dušek, M., Fiurášek, J.: Experimental realization of linear-optical partial SWAP gates. Phys. Rev. Lett. 100, 180501 (2008)
49.
Zurück zum Zitat Zhu, M.Z., Ye, L.: Implementation of SWAP gate and Fredkin gate using linear optical elements. J. Quantum Info. 11, 1350031 (2013)MathSciNet Zhu, M.Z., Ye, L.: Implementation of SWAP gate and Fredkin gate using linear optical elements. J. Quantum Info. 11, 1350031 (2013)MathSciNet
50.
Zurück zum Zitat Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Linear optical implementation of an ancilla-free quantum SWAP gate. Phys. Scr. 81, 015011 (2010)ADS Wang, H.F., Shao, X.Q., Zhao, Y.F., Zhang, S., Yeon, K.H.: Linear optical implementation of an ancilla-free quantum SWAP gate. Phys. Scr. 81, 015011 (2010)ADS
51.
Zurück zum Zitat Fiorentino, M., Kim, T., Wong, F.N.: Single-photon two-qubit SWAP gate for entanglement manipulation. Phys. Rev. A 72, 012318 (2005)ADS Fiorentino, M., Kim, T., Wong, F.N.: Single-photon two-qubit SWAP gate for entanglement manipulation. Phys. Rev. A 72, 012318 (2005)ADS
52.
Zurück zum Zitat Zheng, A.S., Cheng, Y.J., Liu, J.B., Li, T.P.: Realization of the Greenberg-Horne-Zeilinger (GHZ) state and SWAP gate with superconducting quantum-interference devices in a cavity via adiabatic passage. Mod. Phys. Lett. B 22, 1507–1513 (2008)ADSMATH Zheng, A.S., Cheng, Y.J., Liu, J.B., Li, T.P.: Realization of the Greenberg-Horne-Zeilinger (GHZ) state and SWAP gate with superconducting quantum-interference devices in a cavity via adiabatic passage. Mod. Phys. Lett. B 22, 1507–1513 (2008)ADSMATH
53.
Zurück zum Zitat Zheng, X.J., Fang, M.F., Liao, X.P., Cai, J.W.: Quantum logic gates with a two-level trapped ion in a high-finesse cavity beyond the Lamb-Dicke limit. J. Phys. B 40, 507 (2007)ADS Zheng, X.J., Fang, M.F., Liao, X.P., Cai, J.W.: Quantum logic gates with a two-level trapped ion in a high-finesse cavity beyond the Lamb-Dicke limit. J. Phys. B 40, 507 (2007)ADS
54.
Zurück zum Zitat O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)CrossRefADS O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264 (2003)CrossRefADS
55.
Zurück zum Zitat Crespi, A., et al.: Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011)ADS Crespi, A., et al.: Integrated photonic quantum gates for polarization qubits. Nature Commun. 2, 566 (2011)ADS
56.
Zurück zum Zitat Schmidt-Kaler, F., et al.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)CrossRefADS Schmidt-Kaler, F., et al.: Realization of the Cirac-Zoller controlled-NOT quantum gate. Nature 422, 408 (2003)CrossRefADS
57.
Zurück zum Zitat Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)MathSciNet Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)MathSciNet
58.
59.
Zurück zum Zitat Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states. arXiv:0705.1917v1 (quant-ph) Pradhan, B., Agrawal, P., Pati, A.K.: Teleportation and superdense coding with genuine quadripartite entangled states. arXiv:​0705.​1917v1 (quant-ph)
60.
Zurück zum Zitat Xiang, S.-H., Shi, Z.-G., Wen, W., Lu, D.-H., Zhu, X.-X., Song, K.-H.: Concentration scheme for partially entangled photon states via entanglement reflector and no Bell-state analysis. Opt. Commun. 284, 2402–2407 (2011)ADS Xiang, S.-H., Shi, Z.-G., Wen, W., Lu, D.-H., Zhu, X.-X., Song, K.-H.: Concentration scheme for partially entangled photon states via entanglement reflector and no Bell-state analysis. Opt. Commun. 284, 2402–2407 (2011)ADS
61.
Zurück zum Zitat Lee, S.-W., Jeong, H.: Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement. arXiv:1304.1214 (quant-ph) Lee, S.-W., Jeong, H.: Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement. arXiv:​1304.​1214 (quant-ph)
62.
Zurück zum Zitat Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)ADS Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.: New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337 (1995)ADS
63.
Zurück zum Zitat Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 (1999)ADS Kwiat, P.G., Waks, E., White, A.G., Appelbaum, I., Eberhard, P.H.: Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773 (1999)ADS
64.
Zurück zum Zitat Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)ADS Hadfield, R.H.: Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696 (2009)ADS
65.
Zurück zum Zitat Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)ADS Eisaman, M.D., Fan, J., Migdall, A., Polyakov, S.V.: Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011)ADS
66.
Zurück zum Zitat Sabın, C., Garca-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNet Sabın, C., Garca-Alcaine, G.: A classification of entanglement in three-qubit systems. Eur. Phys. J. D 48, 435 (2008)ADSMathSciNet
67.
Zurück zum Zitat Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10, 043014 (2008)ADS Eltschka, C., Osterloh, A., Siewert, J., Uhlmann, A.: Three-tangle for mixtures of generalized GHZ and generalized W states. New J. Phys. 10, 043014 (2008)ADS
69.
Zurück zum Zitat Yu, C.-S., Song, H.-S.: Free entanglement measure of multiparticle quantum states. Phys. Lett. A 330, 377–383 (2004)ADSMATHMathSciNet Yu, C.-S., Song, H.-S.: Free entanglement measure of multiparticle quantum states. Phys. Lett. A 330, 377–383 (2004)ADSMATHMathSciNet
70.
Zurück zum Zitat Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADS Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)ADS
71.
Zurück zum Zitat Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNet Rungta, P., Buzek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)ADSMathSciNet
72.
Zurück zum Zitat Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)ADS Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998)ADS
Metadaten
Titel
Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and nine families of 4-qubit entangled states
Publikationsdatum
01.06.2015
Erschienen in
Quantum Information Processing / Ausgabe 6/2015
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-0948-6

Weitere Artikel der Ausgabe 6/2015

Quantum Information Processing 6/2015 Zur Ausgabe

Neuer Inhalt