Skip to main content
Erschienen in: Quantum Information Processing 1/2016

01.01.2016

Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and Yang–Baxter equation

verfasst von: Yong Zhang, Kun Zhang, Jinglong Pang

Erschienen in: Quantum Information Processing | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper focuses on the study of topological features in teleportation-based quantum computation and aims at presenting a detailed review on teleportation-based quantum computation (Gottesman and Chuang in Nature 402: 390, 1999). In the extended Temperley–Lieb diagrammatical approach, we clearly show that such topological features bring about the fault-tolerant construction of both universal quantum gates and four-partite entangled states more intuitive and simpler. Furthermore, we describe the Yang–Baxter gate by its extended Temperley–Lieb configuration and then study teleportation-based quantum circuit models using the Yang–Baxter gate. Moreover, we discuss the relationship between the extended Temperley–Lieb diagrammatical approach and the Yang–Baxter gate approach. With these research results, we propose a worthwhile subject, the extended Temperley–Lieb diagrammatical approach, for physicists in quantum information and quantum computation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This section is an extended version of the authors’ unpublished paper [12] in which topological features of teleportation-based quantum computation are claimed to be associated with topological features of space–time.
 
2
The Yang–Baxter gate B in this paper is denoted as the Yang–Baxter gate \(B'\) in the authors’ another paper [13].
 
3
The case for the loop parameter \(\lambda =2\) has been discussed in [22].
 
Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000, 2011) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000, 2011)
3.
Zurück zum Zitat Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSMATH Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSMATH
4.
Zurück zum Zitat Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964) Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)
5.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefADSMATH Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)MathSciNetCrossRefADSMATH
7.
Zurück zum Zitat Braunstein, S.L., D’Ariano, G.M., Milburn, G.J., Sacchi, M.F.: Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000)CrossRefADS Braunstein, S.L., D’Ariano, G.M., Milburn, G.J., Sacchi, M.F.: Universal teleportation with a twist. Phys. Rev. Lett. 84, 3486–3489 (2000)CrossRefADS
8.
Zurück zum Zitat Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Theor. 35, 7081–7094 (2001)CrossRefADS Werner, R.F.: All teleportation and dense coding schemes. J. Phys. A Math. Theor. 35, 7081–7094 (2001)CrossRefADS
9.
Zurück zum Zitat Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)CrossRefADS Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390 (1999)CrossRefADS
10.
Zurück zum Zitat Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 State. Phys. Lett. A 308, 96 (2003)MathSciNetCrossRefADSMATH Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 State. Phys. Lett. A 308, 96 (2003)MathSciNetCrossRefADSMATH
11.
12.
13.
Zurück zum Zitat Zhang, Y., Zhang, K.: Bell transform, teleportation operator and teleportation-based quantum computation. arXiv:1401.7009 (2014) Zhang, Y., Zhang, K.: Bell transform, teleportation operator and teleportation-based quantum computation. arXiv:​1401.​7009 (2014)
14.
Zurück zum Zitat Temperley, H.N.V., Lieb, E.H.: Relations between the ‘Percolation’ and ‘Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘Percolation’ problem. Proc. R. Soc. A 322, 251 (1971)MathSciNetCrossRefADSMATH Temperley, H.N.V., Lieb, E.H.: Relations between the ‘Percolation’ and ‘Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘Percolation’ problem. Proc. R. Soc. A 322, 251 (1971)MathSciNetCrossRefADSMATH
15.
Zurück zum Zitat Kauffman, L.H.: Knots and Physics. World Scientific Publishers, Singapore (2002) Kauffman, L.H.: Knots and Physics. World Scientific Publishers, Singapore (2002)
16.
Zurück zum Zitat Yang, C.N.: Some exact results for the many body problems in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)MathSciNetCrossRefADSMATH Yang, C.N.: Some exact results for the many body problems in one dimension with repulsive delta function interaction. Phys. Rev. Lett. 19, 1312–1314 (1967)MathSciNetCrossRefADSMATH
18.
Zurück zum Zitat Perk, J.H.H., Au-Yang, H.: Yang–Baxter Equations, Encyclopedia of Mathematical Physics, pp. 465–473. Elsevier Science, Oxford (2006)CrossRef Perk, J.H.H., Au-Yang, H.: Yang–Baxter Equations, Encyclopedia of Mathematical Physics, pp. 465–473. Elsevier Science, Oxford (2006)CrossRef
19.
20.
Zurück zum Zitat Zhang, Y.: Teleportation, Braid group and Temperley–Lieb algebra. J. Phys. A Math. Theor. 39, 11599–11622 (2006)CrossRefADSMATH Zhang, Y.: Teleportation, Braid group and Temperley–Lieb algebra. J. Phys. A Math. Theor. 39, 11599–11622 (2006)CrossRefADSMATH
21.
Zurück zum Zitat Zhang, Y.: Braid group, Temperley–Lieb algebra, and quantum information and computation. AMS Contemp. Math. 482, 52 (2009) Zhang, Y.: Braid group, Temperley–Lieb algebra, and quantum information and computation. AMS Contemp. Math. 482, 52 (2009)
22.
23.
Zurück zum Zitat Kauffman, L.H., Lomonaco Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)CrossRefADS Kauffman, L.H., Lomonaco Jr, S.J.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)CrossRefADS
24.
Zurück zum Zitat Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quantum Inf. 4, 669–678 (2005)MathSciNetCrossRef Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian. Int. J. Quantum Inf. 4, 669–678 (2005)MathSciNetCrossRef
25.
26.
Zurück zum Zitat Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADS Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)CrossRefADS
27.
Zurück zum Zitat Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation, Chapter 4. Chapman & Hall/CRC Press, Boca Raton (2002) Brylinski, J.L., Brylinski, R.: Universal quantum gates. In: Brylinski, R., Chen, G. (eds.) Mathematics of Quantum Computation, Chapter 4. Chapman & Hall/CRC Press, Boca Raton (2002)
28.
Zurück zum Zitat Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inf. Process. Lett. 75, 101–107 (2000)MathSciNetCrossRef Boykin, P.O., Mor, T., Pulver, M., Roychowdhury, V., Vatan, F.: A new universal and fault-tolerant quantum basis. Inf. Process. Lett. 75, 101–107 (2000)MathSciNetCrossRef
29.
Zurück zum Zitat Brod, D.J., Galvão, E.F.: Extending matchgates into universal quantum computation. Phys. Rev. A 84, 022310 (2011)CrossRefADS Brod, D.J., Galvão, E.F.: Extending matchgates into universal quantum computation. Phys. Rev. A 84, 022310 (2011)CrossRefADS
30.
Zurück zum Zitat Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)CrossRefADS Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)CrossRefADS
31.
Zurück zum Zitat Gottesman, D.: Stabilizer codes and quantum error correction codes. Ph.D. Thesis, CalTech, Pasadena, CA (1997) Gottesman, D.: Stabilizer codes and quantum error correction codes. Ph.D. Thesis, CalTech, Pasadena, CA (1997)
32.
Zurück zum Zitat Greenberger, D.M., Horne, M.A., Shirnony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)CrossRefADSMATH Greenberger, D.M., Horne, M.A., Shirnony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)CrossRefADSMATH
33.
Zurück zum Zitat Childs, A.M.: Teleportation-based approaches to universal quantum computation with singlequbit measurement. Seminar at the Perimeter Institute, November (2003) Childs, A.M.: Teleportation-based approaches to universal quantum computation with singlequbit measurement. Seminar at the Perimeter Institute, November (2003)
34.
Zurück zum Zitat Bonderson, P., Freedman, M., Nayak, C.: Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008)MathSciNetCrossRefADS Bonderson, P., Freedman, M., Nayak, C.: Measurement-only topological quantum computation. Phys. Rev. Lett. 101, 010501 (2008)MathSciNetCrossRefADS
36.
Zurück zum Zitat Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS‘04), IEEE Computer Science Press (2004) Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LiCS‘04), IEEE Computer Science Press (2004)
37.
Zurück zum Zitat Abramsky, S.: Temperley–Lieb algebra: from Knot theory to logica and computation via quantum mechanics. arXiv:0910.2737 (2009) Abramsky, S.: Temperley–Lieb algebra: from Knot theory to logica and computation via quantum mechanics. arXiv:​0910.​2737 (2009)
38.
Zurück zum Zitat Zhang, Y., Kauffman, L.H.: Topological-like features in diagrammatical quantum circuits. Quantum Inf. Process. 6, 477–507 (2007)CrossRef Zhang, Y., Kauffman, L.H.: Topological-like features in diagrammatical quantum circuits. Quantum Inf. Process. 6, 477–507 (2007)CrossRef
39.
Zurück zum Zitat Kauffman, L.H., Lomonaco Jr., S.J.: Topological quantum information theory. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics in Quantum Computation and Quantum Technology, Chapter 14. Chapman & Hall/CRC, Baco Raton (2007) Kauffman, L.H., Lomonaco Jr., S.J.: Topological quantum information theory. In: Chen, G., Kauffman, L., Lomonaco, S. (eds.) Mathematics in Quantum Computation and Quantum Technology, Chapter 14. Chapman & Hall/CRC, Baco Raton (2007)
40.
Zurück zum Zitat Kauffman, L.H.: Knot logic and topological quantum computing with majorana fermions. In: Chubb, J., Chubb, J., Eskandarian, A., Harizanov, V. (eds.) Logic and Algebraic Structures in Quantum Computing and Information. Lecture Notes in Logic, Cambridge University Press (2013) Kauffman, L.H.: Knot logic and topological quantum computing with majorana fermions. In: Chubb, J., Chubb, J., Eskandarian, A., Harizanov, V. (eds.) Logic and Algebraic Structures in Quantum Computing and Information. Lecture Notes in Logic, Cambridge University Press (2013)
41.
44.
Zurück zum Zitat Freedman, M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. arxiv: quant-ph/0001108 (2000) Freedman, M., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. arxiv: quant-ph/​0001108 (2000)
45.
Zurück zum Zitat Freedman, M., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002)MathSciNetCrossRefADSMATH Freedman, M., Kitaev, A., Wang, Z.: Simulation of topological field theories by quantum computers. Commun. Math. Phys. 227, 587–603 (2002)MathSciNetCrossRefADSMATH
46.
Zurück zum Zitat Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40, 31–38 (2003)MathSciNetCrossRefMATH Freedman, M., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40, 31–38 (2003)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Kauffman, L.H., Lomonaco Jr, S.J.: Q-deformed spin networks, Knot polynomials and anyonic topological computation. J. Knot Theory Ramif. 16, 267–332 (2007)MathSciNetCrossRefMATH Kauffman, L.H., Lomonaco Jr, S.J.: Q-deformed spin networks, Knot polynomials and anyonic topological computation. J. Knot Theory Ramif. 16, 267–332 (2007)MathSciNetCrossRefMATH
48.
Zurück zum Zitat Wang, G., Sun, C., Wu, C., Liu, B., Zhang, Y., Xue, K.: Multipartite \(d\)-level GHZ bases associated with generalized Braid matrices. Europhys. Lett. 108, 10001 (2014)CrossRefADS Wang, G., Sun, C., Wu, C., Liu, B., Zhang, Y., Xue, K.: Multipartite \(d\)-level GHZ bases associated with generalized Braid matrices. Europhys. Lett. 108, 10001 (2014)CrossRefADS
49.
Zurück zum Zitat Niu, K., Xue, K., Zhao, Q., Ge, M.L.: The role of the \(\ell _1\)-norm in quantum information theory and two types of the Yang–Baxter equation. J. Phys. A Math. Theor. 44, 265304 (2011)CrossRefADS Niu, K., Xue, K., Zhao, Q., Ge, M.L.: The role of the \(\ell _1\)-norm in quantum information theory and two types of the Yang–Baxter equation. J. Phys. A Math. Theor. 44, 265304 (2011)CrossRefADS
50.
Zurück zum Zitat Wang, G., Xue, K., Sun, C., Zhou, C., Hu, T., Wang, Q.: Temperley–Lieb algebra, Yang–Baxterization and universal gate. Quantum Inf. Process. 9, 699–710 (2010)MathSciNetCrossRefMATH Wang, G., Xue, K., Sun, C., Zhou, C., Hu, T., Wang, Q.: Temperley–Lieb algebra, Yang–Baxterization and universal gate. Quantum Inf. Process. 9, 699–710 (2010)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Sun, C., Wang, G., Hu, T., Zhou, C., Wang, Q., Xue, K.: The representations of Temperley–Lieb algebra and entanglement in a Yang–Baxter system. Int. J. Quantum Inf. 7, 1285–1293 (2009)CrossRefMATH Sun, C., Wang, G., Hu, T., Zhou, C., Wang, Q., Xue, K.: The representations of Temperley–Lieb algebra and entanglement in a Yang–Baxter system. Int. J. Quantum Inf. 7, 1285–1293 (2009)CrossRefMATH
52.
Zurück zum Zitat V’elez, M., Ospina, J.: Generalized Temperley–Lieb algebras and quantum computation, mathematical theory and computational practice In: 5th Conference on Computability in Europe, CiE 2009, Heidelberg, Germany, July 19–24 (2009) V’elez, M., Ospina, J.: Generalized Temperley–Lieb algebras and quantum computation, mathematical theory and computational practice In: 5th Conference on Computability in Europe, CiE 2009, Heidelberg, Germany, July 19–24 (2009)
53.
Zurück zum Zitat Wang, G., Xue, K., Sun, C., Liu, B., Liu, Y., Zhang, Y.: Topological basis associated with B–M–W algebra: two spin-1/2 realization. Phys. Lett. A 379, 1–4 (2015)MathSciNetCrossRefADSMATH Wang, G., Xue, K., Sun, C., Liu, B., Liu, Y., Zhang, Y.: Topological basis associated with B–M–W algebra: two spin-1/2 realization. Phys. Lett. A 379, 1–4 (2015)MathSciNetCrossRefADSMATH
Metadaten
Titel
Teleportation-based quantum computation, extended Temperley–Lieb diagrammatical approach and Yang–Baxter equation
verfasst von
Yong Zhang
Kun Zhang
Jinglong Pang
Publikationsdatum
01.01.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-015-1158-y

Weitere Artikel der Ausgabe 1/2016

Quantum Information Processing 1/2016 Zur Ausgabe

Neuer Inhalt