Skip to main content
Erschienen in: Quantum Information Processing 5/2016

01.05.2016

Efficient quantum secret sharing

verfasst von: Huawang Qin, Yuewei Dai

Erschienen in: Quantum Information Processing | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An efficient quantum secret sharing scheme is proposed, in which the dealer generates some single particles and then uses the operations of quantum-controlled-not and Hadamard gate to encode a determinate secret into these particles. The participants get their shadows by performing the single-particle measurements on their particles, and even the dealer cannot know their shadows. Compared to the existing schemes, our scheme is more practical within the present technologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51, 2291–2306 (2012)MathSciNetCrossRefMATH Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51, 2291–2306 (2012)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)CrossRef Dehkordi, M.H., Fattahi, E.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828–1831 (2012)CrossRef
5.
Zurück zum Zitat Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55–68 (2013)ADSMathSciNetCrossRefMATH Gao, G.: Secure multiparty quantum secret sharing with the collective eavesdropping-check character. Quantum Inf. Process. 12, 55–68 (2013)ADSMathSciNetCrossRefMATH
6.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72, 044301 (2005)ADSCrossRef
7.
Zurück zum Zitat Liu, J., Liu, Y.M., Zhang, Z.J.: Generalized multiparty quantum single-qutrit state sharing. Int. J. Theor. Phys. 47, 2353–2362 (2008)MathSciNetCrossRefMATH Liu, J., Liu, Y.M., Zhang, Z.J.: Generalized multiparty quantum single-qutrit state sharing. Int. J. Theor. Phys. 47, 2353–2362 (2008)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)MathSciNetCrossRefMATH Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Yan, F.L., Gao, T., Li, Y.C.: Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. Phys. Lett. 25, 1187–1190 (2008)ADSCrossRef Yan, F.L., Gao, T., Li, Y.C.: Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations. Chin. Phys. Lett. 25, 1187–1190 (2008)ADSCrossRef
10.
Zurück zum Zitat Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)ADSCrossRef Wang, T.Y., Wen, Q.Y., Chen, X.B., Guo, F.Z., Zhu, F.C.: An efficient and secure multiparty quantum secret sharing scheme based on single photons. Opt. Commun. 281, 6130–6134 (2008)ADSCrossRef
11.
Zurück zum Zitat Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)ADSCrossRef Sun, Y., Wen, Q.Y., Gao, F., Chen, X.B., Zhu, F.C.: Multiparty quantum secret sharing based on Bell measurement. Opt. Commun. 282, 3647–3651 (2009)ADSCrossRef
12.
Zurück zum Zitat Chiawei, T., Tzonelih, H.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460–464 (2012)CrossRef Chiawei, T., Tzonelih, H.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460–464 (2012)CrossRef
13.
Zurück zum Zitat Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)MathSciNetCrossRef Zhou, P., Li, X.H., Liang, Y.J., Deng, F.G., Zhou, H.Y.: Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys. A 381, 164–169 (2007)MathSciNetCrossRef
14.
Zurück zum Zitat Shi, R.H., Lv, G.L., Wang, Y., Huang, D.Z., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52, 539–548 (2013)CrossRefMATH Shi, R.H., Lv, G.L., Wang, Y., Huang, D.Z., Guo, Y.: On quantum secret sharing via Chinese remainder theorem with the non-maximally entanglement state analysis. Int. J. Theor. Phys. 52, 539–548 (2013)CrossRefMATH
16.
Zurück zum Zitat Sun, Y., Xu, S.W., Chen, X.B., Niu, X.X., Yang, Y.X.: Expansible quantum secret sharing network. Quantum Inf. Process. 12, 2877–2888 (2013)ADSMathSciNetCrossRefMATH Sun, Y., Xu, S.W., Chen, X.B., Niu, X.X., Yang, Y.X.: Expansible quantum secret sharing network. Quantum Inf. Process. 12, 2877–2888 (2013)ADSMathSciNetCrossRefMATH
17.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef
18.
Zurück zum Zitat Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)ADSCrossRef Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65, 042310 (2002)ADSCrossRef
19.
20.
Zurück zum Zitat Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADSCrossRef Sarvepalli, P.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys. Rev. A 86, 042303 (2012)ADSCrossRef
21.
Zurück zum Zitat Wang, M.M., Chen, X.B., Yang, Y.X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429–443 (2014)MathSciNetCrossRefMATH Wang, M.M., Chen, X.B., Yang, Y.X.: Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf. Process. 13, 429–443 (2014)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011)MathSciNetCrossRefMATH Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50, 792–798 (2011)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)ADSMathSciNetCrossRef Yang, Y.G., Jia, X., Wang, H.Y., Zhang, H.: Verifiable quantum (k, n)-threshold secret sharing. Quantum Inf. Process. 11, 1619–1625 (2012)ADSMathSciNetCrossRef
25.
Zurück zum Zitat Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)ADSCrossRefMATH Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)ADSCrossRefMATH
27.
Zurück zum Zitat Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis of a new circular quantum secret sharing protocol for remote agents. Quantum Inf. Process. 12, 1173–1183 (2013)ADSMathSciNetCrossRefMATH Zhu, Z.C., Hu, A.Q., Fu, A.M.: Cryptanalysis of a new circular quantum secret sharing protocol for remote agents. Quantum Inf. Process. 12, 1173–1183 (2013)ADSMathSciNetCrossRefMATH
28.
Zurück zum Zitat Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)ADSMathSciNetCrossRefMATH Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state. Quantum Inf. Process. 13, 1907–1916 (2014)ADSMathSciNetCrossRefMATH
29.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)ADSCrossRef Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Liang, Y.J., Zhou, H.Y.: Multiparty quantum secret report. Chin. Phys. Lett. 23, 1676–1679 (2006)ADSCrossRef
30.
31.
Zurück zum Zitat Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)MathSciNetCrossRefMATH Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41, 1915–1923 (1995)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSCrossRef Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)ADSCrossRef
33.
Zurück zum Zitat Steane, A.: The ion trap quantum information processor. Appl. Phys. B Lasers Opt. 64, 623–643 (1997)ADSCrossRef Steane, A.: The ion trap quantum information processor. Appl. Phys. B Lasers Opt. 64, 623–643 (1997)ADSCrossRef
34.
Zurück zum Zitat Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)ADSCrossRef Barenco, A., Deutsch, D., Ekert, A., Jozsa, R.: Conditional quantum dynamics and logic gates. Phys. Rev. Lett. 74, 4083–4086 (1995)ADSCrossRef
37.
Zurück zum Zitat Loss, D., Divincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)ADSCrossRef Loss, D., Divincenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)ADSCrossRef
38.
Zurück zum Zitat Pazy, E., Biolatti, E., Calarco, T., Damico, I., Zanardi, P., Rossi, F., Zoller, P.: Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots. Europhys. Lett. 62, 175–181 (2003)ADSCrossRef Pazy, E., Biolatti, E., Calarco, T., Damico, I., Zanardi, P., Rossi, F., Zoller, P.: Spin-based optical quantum computation via Pauli blocking in semiconductor quantum dots. Europhys. Lett. 62, 175–181 (2003)ADSCrossRef
39.
Zurück zum Zitat Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)ADSCrossRefMATH Makhlin, Y., Schon, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357–400 (2001)ADSCrossRefMATH
40.
Zurück zum Zitat Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)ADSCrossRef Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)ADSCrossRef
Metadaten
Titel
Efficient quantum secret sharing
verfasst von
Huawang Qin
Yuewei Dai
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1251-x

Weitere Artikel der Ausgabe 5/2016

Quantum Information Processing 5/2016 Zur Ausgabe

Neuer Inhalt