Skip to main content
Erschienen in: Quantum Information Processing 5/2016

01.05.2016

Collusive attacks to “circle-type” multi-party quantum key agreement protocols

verfasst von: Bin Liu, Di Xiao, Heng-Yue Jia, Run-Zong Liu

Erschienen in: Quantum Information Processing | Ausgabe 5/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We find that existing multi-party quantum key agreement (MQKA) protocols designed for fairness of the key are, in fact, unfair. Our analysis shows that these protocols are sensitive to collusive attacks; that is, dishonest participants can collaborate in predetermining the key without being detected. In fact, the transmission structures of the quantum particles in those unfair MQKA protocols, three of which have already been analyzed, have much in common. We call these unfair MQKA protocols circle-type MQKA protocols. Likewise, the transmission structures of the quantum particles in MQKA protocols that can resist collusive attacks are also similar. We call such protocols complete-graph-type MQKA protocols. A MQKA protocol also exists that can resist the above attacks but is still not fair, and we call it the tree-type MQKA protocol. We first point out a common, easily missed loophole that severely compromises the fairness of present circle-type MQKA protocols. Then we show that two dishonest participants at special positions can totally predetermine the key generated by circle-type MQKA protocols. We anticipate that our observations will contribute to secure and fair MQKA protocols, especially circle-type protocols.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The single states generated in some protocols can be considered as the entangled states where parts of them (\(R_i\)) have already been measured, just like that in the security proof of BB84 [48].
 
2
In fact, \(S_i\) has changed since \(P_i\) has probably inserted some decoy particles in it. And later, other participant will encode their secrets in it and also insert their decoy states in it. However, for simplicity, we call all the sequences which include the particles of \(S_i\) simply \(S_i\).
 
3
The detection processes generally contain three stages, publishing the positions of the decoy states, measuring them, and comparing the results.
 
Literatur
1.
Zurück zum Zitat Menezes, A.J., van Oorscot, P.C., Vanstone, S.A.: Key establishment protocols. In: Rosen, K.H. (ed.) Handbook of Applied Cryptography. CRC Press, Boca Raton (1997) Menezes, A.J., van Oorscot, P.C., Vanstone, S.A.: Key establishment protocols. In: Rosen, K.H. (ed.) Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)
2.
Zurück zum Zitat Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)CrossRef Mitchell, C.J., Ward, M., Wilson, P.: Key control in key agreement protocols. Electron. Lett. 34(10), 980–981 (1998)CrossRef
3.
Zurück zum Zitat Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628 (2000)CrossRef Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and key agreement protocols. IEEE J. Sel. Areas Commun. 18(4), 628 (2000)CrossRef
4.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of 35th Annual Symposium on the Foundations of Computer Science, Santa Fe, New Mexico, pp. 124–134 (1994)
5.
Zurück zum Zitat Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, pp. 212–219 (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th Annual ACM Symposium on Theory of Computing, New York, pp. 212–219 (1996)
6.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal, Bangalore, India, pp. 175–179 (1984)
7.
Zurück zum Zitat Liu, B., Gao, F., Wen, Q.-Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1383–1390 (2011)ADSCrossRef Liu, B., Gao, F., Wen, Q.-Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1383–1390 (2011)ADSCrossRef
8.
Zurück zum Zitat Jin, W., Zheng, L.-M., Wang, F.-Q., et al.: The influence of stochastic dispersion on quantum key distribution system. Sci. China Inf. Sci. 56, 092304 (2013)CrossRef Jin, W., Zheng, L.-M., Wang, F.-Q., et al.: The influence of stochastic dispersion on quantum key distribution system. Sci. China Inf. Sci. 56, 092304 (2013)CrossRef
9.
Zurück zum Zitat Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–479 (2014)ADSCrossRef
10.
Zurück zum Zitat Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)ADSCrossRef Liu, B., Gao, F., Qin, S.-J., et al.: Choice of measurement as the secret. Phys. Rev. A 89, 042318 (2014)ADSCrossRef
11.
Zurück zum Zitat Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRef Zhang, C.-M., Song, X.-T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution. Chin. Sci. Bull. 59(23), 2825–2828 (2014)CrossRef
12.
Zurück zum Zitat Huang, W., Guo, F.-Z., Huang, Z., Wen, Q.-Y., Zhu, F.-C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536–540 (2011)ADSCrossRef Huang, W., Guo, F.-Z., Huang, Z., Wen, Q.-Y., Zhu, F.-C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536–540 (2011)ADSCrossRef
13.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)ADSCrossRef
15.
Zurück zum Zitat Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999)ADSCrossRef
16.
Zurück zum Zitat Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.-L., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
17.
Zurück zum Zitat Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
18.
Zurück zum Zitat Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef Gao, F., Qin, S.-J., Wen, Q.-Y., Zhu, F.-C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)ADSCrossRef
19.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef Huang, W., Wen, Q.-Y., Jia, H.-Y., Qin, S.-J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)ADSCrossRef
20.
Zurück zum Zitat Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)ADSCrossRefMATH Yang, Y.-G., Cao, W.-F., Wen, Q.-Y.: Secure quantum private comparison. Phys. Scr. 80, 065002 (2009)ADSCrossRefMATH
21.
Zurück zum Zitat Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009) Chen, X.-B., Xu, G., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1161–1165 (2009)
22.
Zurück zum Zitat Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)ADSMathSciNetCrossRefMATH Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12, 887–897 (2013)ADSMathSciNetCrossRefMATH
23.
Zurück zum Zitat Gao, F., Wen, Q.-Y., Zhu, F.-C.: Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748 (2007)ADSCrossRef Gao, F., Wen, Q.-Y., Zhu, F.-C.: Comment on: “Quantum exam” [Phys. Lett. A 350 (2006) 174]. Phys. Lett. A 360, 748 (2007)ADSCrossRef
24.
Zurück zum Zitat Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRef Gao, F., Guo, F.-Z., Wen, Q.-Y., Zhu, F.-C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)ADSCrossRef
25.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)ADSMathSciNetCrossRef Liu, B., Gao, F., Huang, W., et al.: QKD-based quantum private query without a failure probability. Sci. China Phys. Mech. Astron. 58, 100301 (2015)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Huang, W., Su, Q., Li, Y.-B., Sun, Y.: Fault-tolerant quantum cryptographic protocols with collective detection over the collective amplitude damping channel. Phys. Scr. 89(7), 075102 (2014)ADSCrossRef Huang, W., Su, Q., Li, Y.-B., Sun, Y.: Fault-tolerant quantum cryptographic protocols with collective detection over the collective amplitude damping channel. Phys. Scr. 89(7), 075102 (2014)ADSCrossRef
27.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)ADSCrossRef
28.
Zurück zum Zitat Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031–1038 (2007)CrossRef Tajima, A., Tanaka, A., Maeda, W., Takahashi, S., Tomita, A.: Practical quantum cryptosystem for metro area applications. IEEE J. Sel. Top. Quantum Electron. 13, 1031–1038 (2007)CrossRef
29.
Zurück zum Zitat Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)CrossRef Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149 (2004)CrossRef
30.
Zurück zum Zitat Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefMATH Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50, 1793–1802 (2011)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSCrossRef Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)ADSCrossRef
32.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., et al.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH Huang, W., Wen, Q.-Y., Liu, B., et al.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13(3), 649–663 (2014)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Huang, W., Su, Q., Wu, X., et al.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)CrossRefMATH Huang, W., Su, Q., Wu, X., et al.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. 53, 2891–2901 (2014)CrossRefMATH
34.
Zurück zum Zitat Shen, D.S.-, Ma, W.-P., Wang, L.-L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)ADSMathSciNetCrossRefMATH Shen, D.S.-, Ma, W.-P., Wang, L.-L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13(10), 2313–2324 (2014)ADSMathSciNetCrossRefMATH
35.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRefMATH Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)ADSMathSciNetCrossRefMATH
36.
Zurück zum Zitat Yin, X.-R., Wen, W.-P., Shen, D.-S., et al.: Three-party quantum key agreement with Bell states. Acta Phys. Sin. 62(17), 170304 (2013) Yin, X.-R., Wen, W.-P., Shen, D.-S., et al.: Three-party quantum key agreement with Bell states. Acta Phys. Sin. 62(17), 170304 (2013)
37.
38.
Zurück zum Zitat Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRefMATH Xu, G.-B., Wen, Q.-Y., Gao, F., Qin, S.-J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13(12), 2587–2594 (2014)ADSMathSciNetCrossRefMATH
39.
Zurück zum Zitat Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)ADSMathSciNetCrossRefMATH Shi, R.-H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)ADSMathSciNetCrossRefMATH
40.
Zurück zum Zitat Yin, X.-R., Wen, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52(11), 3915–3921 (2013)MathSciNetCrossRefMATH Yin, X.-R., Wen, W.-P., Liu, W.-Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52(11), 3915–3921 (2013)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Sun, Z.-W., Zhang, C., Wang, B.-H., et al.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)ADSMathSciNetCrossRefMATH Sun, Z.-W., Zhang, C., Wang, B.-H., et al.: Improvements on “multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12(11), 3411–3420 (2013)ADSMathSciNetCrossRefMATH
42.
Zurück zum Zitat Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)MathSciNetCrossRefMATH Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13(11), 2391–2405 (2014)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhu, Z.-C., Hu, A.-Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)ADSMathSciNetCrossRefMATH Zhu, Z.-C., Hu, A.-Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)ADSMathSciNetCrossRefMATH
45.
Zurück zum Zitat Sun, Z.-W., Zhang, C., Wang, P., Yu, J.-P., Zhang, Y., Long, D.-Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. (2015). doi:10.1007/s10773-015-2831-8 Sun, Z.-W., Zhang, C., Wang, P., Yu, J.-P., Zhang, Y., Long, D.-Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. (2015). doi:10.​1007/​s10773-015-2831-8
46.
Zurück zum Zitat Huang, W., Wen, Q.-Y., Liu, B., et al.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)ADSMathSciNetCrossRef Huang, W., Wen, Q.-Y., Liu, B., et al.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13(7), 1651–1657 (2014)ADSMathSciNetCrossRef
47.
Zurück zum Zitat Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)MathSciNet Liu, B., Gao, F., Huang, W., Li, D., Wen, Q.-Y.: Controlling the key by choosing the detection bits in quantum cryptographic protocols. Sci. China Inf. Sci. 58(11), 112110 (2015)MathSciNet
48.
Zurück zum Zitat Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRef Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000)ADSCrossRef
Metadaten
Titel
Collusive attacks to “circle-type” multi-party quantum key agreement protocols
verfasst von
Bin Liu
Di Xiao
Heng-Yue Jia
Run-Zong Liu
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2016
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-016-1264-5

Weitere Artikel der Ausgabe 5/2016

Quantum Information Processing 5/2016 Zur Ausgabe

Neuer Inhalt