Skip to main content
Erschienen in: Quantum Information Processing 5/2017

01.05.2017

Semiquantum secure direct communication using EPR pairs

verfasst von: Ming-Hui Zhang, Hui-Fang Li, Zhao-Qiang Xia, Xiao-Yi Feng, Jin-Ye Peng

Erschienen in: Quantum Information Processing | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum secure direct communication can transmit a secret message directly through quantum channels without first generating a shared secret key. In the most of the existing protocols, quantum secure direct communication is possible only when both communicating participants have quantum capabilities. So what happens if either party of two participants just has classical capabilities? In this paper, we propose a semiquantum secure direct communication protocol with Einstein–Podolsky–Rosen photon pairs in which the classical sender Bob transmits a secret message to quantum Alice directly. After checking the security of quantum channels, Bob encodes his secret message on Alice’s code sequence. Then, quantum Alice extracts Bob’s secret message by measuring her home qubits and the received code qubits, respectively. In addition, we demonstrate the security of the proposed protocol against some individual eavesdropping attacks. The efficiency analysis shows that our protocol can provide higher efficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore. pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore. pp. 175–179 (1984)
4.
Zurück zum Zitat Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)ADSCrossRef Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al.: The security of practical quantum key distribution. Rev. Mod. Phys. 81(3), 1301–1350 (2009)ADSCrossRef
5.
Zurück zum Zitat Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRef Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)ADSCrossRef
6.
Zurück zum Zitat Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)ADSCrossRef Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68(4), 042315 (2003)ADSCrossRef
7.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)ADSCrossRef Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)ADSCrossRef
8.
Zurück zum Zitat Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108(13), 130503 (2012)ADSCrossRef
10.
Zurück zum Zitat Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)ADSCrossRef Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)ADSCrossRef
11.
Zurück zum Zitat Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSCrossRef Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)ADSCrossRef
12.
Zurück zum Zitat Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)ADSCrossRef Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)ADSCrossRef
14.
Zurück zum Zitat Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)ADSCrossRef Wallden, P., Dunjko, V., Kent, A., et al.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)ADSCrossRef
15.
Zurück zum Zitat Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15(10), 4283–4301 (2016)ADSMATHCrossRef Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15(10), 4283–4301 (2016)ADSMATHCrossRef
16.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)ADSCrossRef
17.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)ADSCrossRef
18.
19.
Zurück zum Zitat Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRef Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)ADSCrossRef
20.
Zurück zum Zitat Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)CrossRef Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5(9), e16144 (2016)CrossRef
21.
Zurück zum Zitat Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSMATHCrossRef Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)ADSMATHCrossRef
22.
Zurück zum Zitat Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by Einstein–Podolsky–Rosen pairs and entanglement swapping. arXiv:quant-ph/0406083 (2004) Gao, T., Yan, F.L., Wang, Z.X.: Quantum secure direct communication by Einstein–Podolsky–Rosen pairs and entanglement swapping. arXiv:​quant-ph/​0406083 (2004)
23.
Zurück zum Zitat Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)ADSCrossRef Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)ADSCrossRef
24.
Zurück zum Zitat Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)ADSCrossRef Jin, X.R., Ji, X., Zhang, Y.Q., et al.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1–2), 67–70 (2006)ADSCrossRef
25.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)ADSCrossRef Man, Z.X., Xia, Y.J.: Improvement of security of three-party quantum secure direct communication based on GHZ states. Chin. Phys. Lett. 24(1), 15–18 (2007)ADSCrossRef
26.
Zurück zum Zitat Man, Z.X., Xia, Y.J., Nguyen, B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)ADSCrossRef Man, Z.X., Xia, Y.J., Nguyen, B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B At. Mol. Opt. Phys. 39(18), 3855–3863 (2006)ADSCrossRef
27.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Efficient one-sender versus N-receiver quantum secure direct communication. Chin. Phys. Lett. 23(8), 1973–1975 (2006)ADSCrossRef Man, Z.X., Xia, Y.J.: Efficient one-sender versus N-receiver quantum secure direct communication. Chin. Phys. Lett. 23(8), 1973–1975 (2006)ADSCrossRef
28.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Quantum secure direct communication via partially entangled states. Chin. Phys. 16(5), 1197–1200 (2007)ADSCrossRef Man, Z.X., Xia, Y.J.: Quantum secure direct communication via partially entangled states. Chin. Phys. 16(5), 1197–1200 (2007)ADSCrossRef
29.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)ADSMATHCrossRef Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359(5), 359–365 (2006)ADSMATHCrossRef
30.
Zurück zum Zitat Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)ADSCrossRef Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)ADSCrossRef
31.
Zurück zum Zitat Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)ADSCrossRef Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)ADSCrossRef
32.
Zurück zum Zitat Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)MATHCrossRef Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8(3), 443–450 (2010)MATHCrossRef
33.
Zurück zum Zitat Wang, T.J., Li, T., Du, F.F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef Wang, T.J., Li, T., Du, F.F., et al.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28(4), 040305 (2011)ADSCrossRef
34.
Zurück zum Zitat Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–48 (2017)CrossRef Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–48 (2017)CrossRef
35.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADSCrossRef Man, Z.X., Xia, Y.J.: Controlled bidirectional quantum direct communication by using a GHZ state. Chin. Phys. Lett. 23(7), 1680–1682 (2006)ADSCrossRef
36.
Zurück zum Zitat Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSMathSciNetCrossRef Ye, T.Y., Jiang, L.Z.: Improvement of controlled bidirectional quantum direct communication using a GHZ state. Chin. Phys. Lett. 30(4), 040305 (2013)ADSMathSciNetCrossRef
37.
Zurück zum Zitat Chang, C.H., Luo, Y.P., Yang, C.W., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)ADSMathSciNetMATHCrossRef Chang, C.H., Luo, Y.P., Yang, C.W., et al.: Intercept-and-resend attack on controlled bidirectional quantum direct communication and its improvement. Quantum Inf. Process. 14(9), 3515–3522 (2015)ADSMathSciNetMATHCrossRef
38.
Zurück zum Zitat Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)ADSMathSciNetMATHCrossRef Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)ADSMathSciNetMATHCrossRef
39.
Zurück zum Zitat Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)ADSCrossRef Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)ADSCrossRef
40.
Zurück zum Zitat Gu, B., Huang, Y.G., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)MathSciNetMATHCrossRef Gu, B., Huang, Y.G., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons. Int. J. Theor. Phys. 52(12), 4461–4469 (2013)MathSciNetMATHCrossRef
41.
Zurück zum Zitat Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)ADSMATHCrossRef Ye, T.Y.: Quantum secure direct dialogue over collective noise channels based on logical Bell states. Quantum Inf. Process. 14(4), 1487–1499 (2015)ADSMATHCrossRef
42.
Zurück zum Zitat Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 1–10 (2015)CrossRef Ye, T.Y.: Fault tolerant channel-encrypting quantum dialogue against collective noise. Sci. China Phys. Mech. Astron. 58(4), 1–10 (2015)CrossRef
43.
Zurück zum Zitat Gu, B., Huang, Y.G., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)ADSCrossRef Gu, B., Huang, Y.G., Fang, X., et al.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20(10), 100309 (2011)ADSCrossRef
44.
Zurück zum Zitat Gu, B., Huang, Y.G., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)ADSMATHCrossRef Gu, B., Huang, Y.G., Fang, X., et al.: Bidirectional quantum secure direct communication network protocol with hyperentanglement. Commun. Theor. Phys. 56(4), 659–663 (2011)ADSMATHCrossRef
45.
Zurück zum Zitat Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)MATHCrossRef Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51(9), 2923–2929 (2012)MATHCrossRef
46.
Zurück zum Zitat Yang, Y.Y.: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53(7), 2216–2221 (2014)MathSciNetCrossRef Yang, Y.Y.: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53(7), 2216–2221 (2014)MathSciNetCrossRef
47.
Zurück zum Zitat Li, Y.B., Song, T.T., Huang, W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)MathSciNetMATHCrossRef Li, Y.B., Song, T.T., Huang, W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54(2), 589–597 (2015)MathSciNetMATHCrossRef
48.
Zurück zum Zitat Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)ADSMathSciNetMATHCrossRef Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13(12), 2731–2743 (2014)ADSMathSciNetMATHCrossRef
49.
Zurück zum Zitat Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)ADSMathSciNetMATHCrossRef Guerra, A.G.D.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15(11), 4747–4758 (2016)ADSMathSciNetMATHCrossRef
50.
Zurück zum Zitat Li, W.L., Chen, J.B., Wang, X.L., et al.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)MathSciNetMATHCrossRef Li, W.L., Chen, J.B., Wang, X.L., et al.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54(1), 100–105 (2015)MathSciNetMATHCrossRef
51.
Zurück zum Zitat Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 160307 (2015) Li, X.H.: Quantum secure direct communication. Acta Phys. Sin. 64(16), 160307 (2015)
53.
Zurück zum Zitat Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)ADSMathSciNetCrossRef Tan, Y.G., Lu, H., Cai, Q.Y.: Comment on “Quantum key distribution with classical Bob”. Phys. Rev. Lett. 102(9), 098901 (2009)ADSMathSciNetCrossRef
54.
Zurück zum Zitat Boyer, M., Kenigsberg, D., Mor, T.: Comment on “Quantum Key Distribution with Classical Bob” Reply. Phys. Rev. Lett. 102(9), 098902 (2009)ADSMathSciNetCrossRef Boyer, M., Kenigsberg, D., Mor, T.: Comment on “Quantum Key Distribution with Classical Bob” Reply. Phys. Rev. Lett. 102(9), 098902 (2009)ADSMathSciNetCrossRef
56.
Zurück zum Zitat Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)MATHCrossRef Lu, H., Cai, Q.Y.: Quantum key distribution with classical Alice. Int. J. Quantum Inf. 6(6), 1195–1202 (2008)MATHCrossRef
57.
Zurück zum Zitat Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)ADSCrossRef Zhang, X.Z., Gong, W.G., Tan, Y.G., et al.: Quantum key distribution series network protocol with M-classical Bobs. Chin. Phys. B 18(6), 2143–2148 (2009)ADSCrossRef
58.
Zurück zum Zitat Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)ADSCrossRef Zou, X.F., Qiu, D.W., Li, L.Z., et al.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)ADSCrossRef
59.
60.
Zurück zum Zitat Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)ADSCrossRef Boyer, M., Mor, T.: Comment on “Semiquantum-key distribution using less than four quantum states”. Phys. Rev. A 83(4), 046301 (2011)ADSCrossRef
61.
Zurück zum Zitat Zou, X.F., Qiu, D.W.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states”’. Phys. Rev. A 83(4), 046302 (2011)ADSCrossRef Zou, X.F., Qiu, D.W.: Reply to “Comment on ‘Semiquantum-key distribution using less than four quantum states”’. Phys. Rev. A 83(4), 046302 (2011)ADSCrossRef
62.
Zurück zum Zitat Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(6), 1427–1435 (2011)MathSciNetMATHCrossRef Miyadera, T.: Relation between information and disturbance in quantum key distribution protocol with classical Alice. Int. J. Quantum Inf. 9(6), 1427–1435 (2011)MathSciNetMATHCrossRef
63.
Zurück zum Zitat Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)ADSMathSciNetCrossRef Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum key distribution using entangled states. Chin. Phys. Lett. 28(10), 100301 (2011)ADSMathSciNetCrossRef
64.
Zurück zum Zitat Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetCrossRef Yu, K.F., Yang, C.W., Liao, C.H., et al.: Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf. Process. 13(6), 1457–1465 (2014)ADSMathSciNetCrossRef
65.
Zurück zum Zitat Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)MathSciNetMATHCrossRef Krawec, W.O.: Restricted attacks on semi-quantum key distribution protocols. Quantum Inf. Process. 13(11), 2417–2436 (2014)MathSciNetMATHCrossRef
66.
Zurück zum Zitat Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)ADSMathSciNetMATHCrossRef Yang, Y.G., Sun, S.J., Zhao, Q.Q.: Trojan-horse attacks on quantum key distribution with classical Bob. Quantum Inf. Process. 14(2), 681–686 (2015)ADSMathSciNetMATHCrossRef
67.
Zurück zum Zitat Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)ADSCrossRef Li, Q., Chan, W.H., Zhang, S.Y.: Semiquantum key distribution with secure delegated quantum computation. Sci. Rep. 6, 19898 (2016)ADSCrossRef
68.
Zurück zum Zitat Zou, X.F., Qiu, D.W., Zhang, S.Y.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)ADSMathSciNetMATHCrossRef Zou, X.F., Qiu, D.W., Zhang, S.Y.: Semiquantum key distribution without invoking the classical party’s measurement capability. Quantum Inf. Process. 14(8), 2981–2996 (2015)ADSMathSciNetMATHCrossRef
69.
Zurück zum Zitat Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)ADSCrossRef Krawec, W.O.: Mediated semiquantum key distribution. Phys. Rev. A 91(3), 032323 (2015)ADSCrossRef
70.
Zurück zum Zitat Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)ADSCrossRef Li, Q., Chan, W.H., Long, D.Y.: Semiquantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)ADSCrossRef
71.
Zurück zum Zitat Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)MathSciNetMATHCrossRef Wang, J., Zhang, S., Zhang, Q., et al.: Semiquantum secret sharing using two-particle entangled state. Int. J. Quantum Inf. 10(5), 1250050 (2012)MathSciNetMATHCrossRef
73.
Zurück zum Zitat Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)ADSMathSciNetCrossRef Gao, G., Wang, Y., Wang, D.: Multiparty semiquantum secret sharing based on rearranging orders of qubits. Mod. Phys. Lett. B 30(10), 1650130 (2016)ADSMathSciNetCrossRef
74.
Zurück zum Zitat Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRef Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol. Sci. China Phys. Mech. Astron. 57(9), 1696–1702 (2014)ADSCrossRef
75.
Zurück zum Zitat Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)ADSMathSciNetMATHCrossRef Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15(2), 947–958 (2016)ADSMathSciNetMATHCrossRef
76.
Zurück zum Zitat Li, C.Y., Zhou, H.Y., Wang, Y., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)ADSCrossRef Li, C.Y., Zhou, H.Y., Wang, Y., et al.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22(5), 1049–1052 (2005)ADSCrossRef
77.
Zurück zum Zitat Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)ADSCrossRef Li, C.Y., Li, X.H., Deng, F.G., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23(11), 2896–2899 (2006)ADSCrossRef
78.
Zurück zum Zitat Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)ADSMATHCrossRef Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)ADSMATHCrossRef
79.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRef Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)ADSCrossRef
80.
Zurück zum Zitat Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRef Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)ADSCrossRef
81.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
82.
Zurück zum Zitat Degiovanni, I.P., Ruo Berchera, I., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69(3), 032310 (2004)ADSCrossRef Degiovanni, I.P., Ruo Berchera, I., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69(3), 032310 (2004)ADSCrossRef
83.
Zurück zum Zitat Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)ADSCrossRef Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94(14), 140501 (2005)ADSCrossRef
84.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., et al.: Quantum cryptography. Rev. Mod. Phys. 74(1), 145–195 (2002)ADSCrossRef
85.
Zurück zum Zitat Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1997)MATH Peres, A.: Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht (1997)MATH
86.
Zurück zum Zitat Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)ADSCrossRef Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)ADSCrossRef
88.
Zurück zum Zitat Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)ADSCrossRef Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85(26), 5635–5638 (2000)ADSCrossRef
89.
Zurück zum Zitat Braginsky, V.B., Khalili, F.Y.: Quantum Measurement. Cambridge University Press, Cambridge (1992)MATHCrossRef Braginsky, V.B., Khalili, F.Y.: Quantum Measurement. Cambridge University Press, Cambridge (1992)MATHCrossRef
90.
Zurück zum Zitat Liu, C., Dutton, Z., Behroozi, C.H., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819), 490–493 (2001)ADSCrossRef Liu, C., Dutton, Z., Behroozi, C.H., et al.: Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409(6819), 490–493 (2001)ADSCrossRef
91.
Zurück zum Zitat Phillips, D.F., Fleischhauer, A., Mair, A., et al.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783–786 (2001)ADSCrossRef Phillips, D.F., Fleischhauer, A., Mair, A., et al.: Storage of light in atomic vapor. Phys. Rev. Lett. 86(5), 783–786 (2001)ADSCrossRef
Metadaten
Titel
Semiquantum secure direct communication using EPR pairs
verfasst von
Ming-Hui Zhang
Hui-Fang Li
Zhao-Qiang Xia
Xiao-Yi Feng
Jin-Ye Peng
Publikationsdatum
01.05.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1573-3

Weitere Artikel der Ausgabe 5/2017

Quantum Information Processing 5/2017 Zur Ausgabe

Neuer Inhalt