Skip to main content
Erschienen in: Quantum Information Processing 6/2017

01.06.2017

Reversible circuit synthesis by genetic programming using dynamic gate libraries

verfasst von: Mustapha Y. Abubakar, Low Tang Jung, Nordin Zakaria, Ahmed Younes, Abdel-Haleem Abdel-Aty

Erschienen in: Quantum Information Processing | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We have defined a new method for automatic construction of reversible logic circuits by using the genetic programming approach. The choice of the gate library is 100% dynamic. The algorithm is capable of accepting all possible combinations of the following gate types: NOT TOFFOLI, NOT PERES, NOT CNOT TOFFOLI, NOT CNOT SWAP FREDKIN, NOT CNOT TOFFOLI SWAP FREDKIN, NOT CNOT PERES, NOT CNOT SWAP FREDKIN PERES, NOT CNOT TOFFOLI PERES and NOT CNOT TOFFOLI SWAP FREDKIN PERES. Our method produced near optimum circuits in some cases when a particular subset of gate types was used in the library. Meanwhile, in some cases, optimal circuits were produced due to the heuristic nature of the algorithm. We compared the outcomes of our method with several existing synthesis methods, and it was shown that our algorithm performed relatively well compared to the previous synthesis methods in terms of the output efficiency of the algorithm and execution time as well.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin–Toffoli templates for reversible logic synthesis. In: Proceedings of the 2003 IEEE-ACM International Conference on Computer-Aided Design, Ser. ICCAD ’03, p. 256. IEEE Computer Society, Washington (2003). doi:10.1109/ICCAD.2003.73 Maslov, D., Dueck, G.W., Miller, D.M.: Fredkin–Toffoli templates for reversible logic synthesis. In: Proceedings of the 2003 IEEE-ACM International Conference on Computer-Aided Design, Ser. ICCAD ’03, p. 256. IEEE Computer Society, Washington (2003). doi:10.​1109/​ICCAD.​2003.​73
2.
Zurück zum Zitat Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit synthesis. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, Ser. ICCAD ’02, pp. 353–360. ACM, New York (2002). doi:10.1145/774572.774625 Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit synthesis. In: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design, Ser. ICCAD ’02, pp. 353–360. ACM, New York (2002). doi:10.​1145/​774572.​774625
3.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRef Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)ADSCrossRef
4.
Zurück zum Zitat De Vos, A., Van Rentergem, Y., De Keyser, K.: The decomposition of an arbitrary reversible logic circuit. J. Phys. A Math. Gen. 39(18), 5015 (2006)ADSMathSciNetCrossRefMATH De Vos, A., Van Rentergem, Y., De Keyser, K.: The decomposition of an arbitrary reversible logic circuit. J. Phys. A Math. Gen. 39(18), 5015 (2006)ADSMathSciNetCrossRefMATH
5.
Zurück zum Zitat De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.: Design of reversible logic circuits by means of control gates. In: Integrated Circuit Design, pp. 255–264. Springer, Berlin (2000) De Vos, A., Desoete, B., Adamski, A., Pietrzak, P., Sibinski, M., Widerski, T.: Design of reversible logic circuits by means of control gates. In: Integrated Circuit Design, pp. 255–264. Springer, Berlin (2000)
7.
Zurück zum Zitat Donald, J., Jha, N.K.: Reversible logic synthesis with Fredkin and Peres gates. ACM J. Emerg. Technol. Comput. Syst. (JETC) 4(1), 2 (2008) Donald, J., Jha, N.K.: Reversible logic synthesis with Fredkin and Peres gates. ACM J. Emerg. Technol. Comput. Syst. (JETC) 4(1), 2 (2008)
8.
Zurück zum Zitat Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Conference on Communications, Computers and Signal Processing, pp. 206–209. Citeseer (2007) Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In: IEEE Pacific Conference on Communications, Computers and Signal Processing, pp. 206–209. Citeseer (2007)
9.
Zurück zum Zitat Grobe, D., Chen, X., Dueck, G.W., Drechsler, R.: Exact SAT-based Toffoli network synthesis. In: Proceedings of the 17th ACM Great Lakes Symposium on VLSI, pp. 96–101. ACM (2007) Grobe, D., Chen, X., Dueck, G.W., Drechsler, R.: Exact SAT-based Toffoli network synthesis. In: Proceedings of the 17th ACM Great Lakes Symposium on VLSI, pp. 96–101. ACM (2007)
10.
Zurück zum Zitat Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Proceedings of the 41st Annual Design Automation Conference, pp. 834–837. ACM (2004) Kerntopf, P.: A new heuristic algorithm for reversible logic synthesis. In: Proceedings of the 41st Annual Design Automation Conference, pp. 834–837. ACM (2004)
11.
Zurück zum Zitat Lukac, M., Pivtoraiko, M., Mishchenko, A., Perkowski, M.: Automated synthesis of generalized reversible cascades using genetic algorithms. In: Proceedings of the 5th International Workshop on Boolean Problems, 2002. Citeseer (2002) Lukac, M., Pivtoraiko, M., Mishchenko, A., Perkowski, M.: Automated synthesis of generalized reversible cascades using genetic algorithms. In: Proceedings of the 5th International Workshop on Boolean Problems, 2002. Citeseer (2002)
12.
Zurück zum Zitat Markov, K.N.P.I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3 and 4), 0282–0294 (2008)MathSciNet Markov, K.N.P.I.L., Hayes, J.P.: Optimal synthesis of linear reversible circuits. Quantum Inf. Comput. 8(3 and 4), 0282–0294 (2008)MathSciNet
13.
Zurück zum Zitat Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings of the 40th Annual Design Automation Conference, pp. 318–323. ACM (2003) Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Proceedings of the 40th Annual Design Automation Conference, pp. 318–323. ACM (2003)
14.
Zurück zum Zitat Rubinstein, B.I.: Evolving quantum circuits using genetic programming. In: Evolutionary Computation. Proceedings of the 2001 Congress on, vol. 1, pp. 144–151. IEEE (2001) Rubinstein, B.I.: Evolving quantum circuits using genetic programming. In: Evolutionary Computation. Proceedings of the 2001 Congress on, vol. 1, pp. 144–151. IEEE (2001)
15.
Zurück zum Zitat Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 13 (2010) Saeedi, M., Zamani, M.S., Sedighi, M., Sasanian, Z.: Reversible circuit synthesis using a cycle-based approach. ACM J. Emerg. Technol. Comput. Syst. (JETC) 6(4), 13 (2010)
17.
Zurück zum Zitat R. Wille and R. Drechsler, BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275. ACM (2009) R. Wille and R. Drechsler, BDD-based synthesis of reversible logic for large functions. In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275. ACM (2009)
18.
Zurück zum Zitat Zakablukov, D.V.: Fast synthesis of invertible circuits based on permutation group theory. Prikl. Diskretn. Mat. 2, 101–109 (2014) Zakablukov, D.V.: Fast synthesis of invertible circuits based on permutation group theory. Prikl. Diskretn. Mat. 2, 101–109 (2014)
19.
Zurück zum Zitat Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum circuit simplification and level compaction. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 27(3), 436–444 (2008)CrossRef
20.
Zurück zum Zitat Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey. ACM Comput. Surv. (CSUR) 45(2), 21 (2013)CrossRefMATH Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits: a survey. ACM Comput. Surv. (CSUR) 45(2), 21 (2013)CrossRefMATH
21.
Zurück zum Zitat Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for reversible logic. Microelectron. J. 41(4), 185–194 (2010)CrossRef Saeedi, M., Sedighi, M., Zamani, M.S.: A library-based synthesis methodology for reversible logic. Microelectron. J. 41(4), 185–194 (2010)CrossRef
22.
Zurück zum Zitat Mamun, M., Al, S., Menville, D.: Quantum Cost Optimization for Reversible Sequential Circuit, arXiv preprint arXiv:1407.7098 (2014) Mamun, M., Al, S., Menville, D.: Quantum Cost Optimization for Reversible Sequential Circuit, arXiv preprint arXiv:​1407.​7098 (2014)
23.
24.
Zurück zum Zitat Younes, A.: Reducing quantum cost of reversible circuits for homogeneous boolean functions. J. Circuits Syst. Comput. 19(07), 1423–1434 (2010)CrossRef Younes, A.: Reducing quantum cost of reversible circuits for homogeneous boolean functions. J. Circuits Syst. Comput. 19(07), 1423–1434 (2010)CrossRef
25.
Zurück zum Zitat Mukhanov, O., et al.: Energy-effecient single UX quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)ADSCrossRef Mukhanov, O., et al.: Energy-effecient single UX quantum technology. IEEE Trans. Appl. Supercond. 21(3), 760–769 (2011)ADSCrossRef
26.
Zurück zum Zitat Ye, Y., Roy, K.: Energy recovery circuits using reversible and partially reversible logic. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 769–778 (1996)CrossRef Ye, Y., Roy, K.: Energy recovery circuits using reversible and partially reversible logic. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 43(9), 769–778 (1996)CrossRef
27.
Zurück zum Zitat Athas, W.C., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Physics and Computation. PhysComp’94, Proceedings, Workshop on, pp. 111–118. IEEE (1994) Athas, W.C., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Physics and Computation. PhysComp’94, Proceedings, Workshop on, pp. 111–118. IEEE (1994)
28.
Zurück zum Zitat Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, UK (2000) Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, UK (2000)
29.
Zurück zum Zitat Bahauddin, S.M., Irfan, A.A.M.: Permutation algebra for constructing reversible circuits. J. Quantum Inf. Sci. 2(03), 61 (2012)CrossRef Bahauddin, S.M., Irfan, A.A.M.: Permutation algebra for constructing reversible circuits. J. Quantum Inf. Sci. 2(03), 61 (2012)CrossRef
30.
Zurück zum Zitat Younes, A.: Tight bounds on the synthesis of 3-bit reversible circuits: Nr library. J. Circuits Syst. Comput. 23(03), 1450040 (2014)CrossRef Younes, A.: Tight bounds on the synthesis of 3-bit reversible circuits: Nr library. J. Circuits Syst. Comput. 23(03), 1450040 (2014)CrossRef
31.
32.
Zurück zum Zitat Younes, A.: On the universality of n-bit reversible gate libraries. Appl. Math. Inf. Sci 9(5), 2579–2588 (2015)MathSciNet Younes, A.: On the universality of n-bit reversible gate libraries. Appl. Math. Inf. Sci 9(5), 2579–2588 (2015)MathSciNet
33.
Zurück zum Zitat Zakablukov, D.: On Asymptotic Gate Complexity and Depth of Reversible Circuits Without Additional Memory, arXiv preprint arXiv:1504.06876 (2015) Zakablukov, D.: On Asymptotic Gate Complexity and Depth of Reversible Circuits Without Additional Memory, arXiv preprint arXiv:​1504.​06876 (2015)
34.
Zurück zum Zitat Arabzadeh, M., Zamani, M.S., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12(4), 1677–1699 (2013)ADSMathSciNetCrossRefMATH Arabzadeh, M., Zamani, M.S., Sedighi, M., Saeedi, M.: Depth-optimized reversible circuit synthesis. Quantum Inf. Process. 12(4), 1677–1699 (2013)ADSMathSciNetCrossRefMATH
36.
Zurück zum Zitat Storme, L., De Vos, A., Jacobs, G.: Group theoretical aspects of reversible logic gates. J. Univ. Comput. Sci. 5(5), 307–321 (1999)MATH Storme, L., De Vos, A., Jacobs, G.: Group theoretical aspects of reversible logic gates. J. Univ. Comput. Sci. 5(5), 307–321 (1999)MATH
37.
38.
Zurück zum Zitat Al-Rabadi, A.N.: Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer, Berlin (2012)MATH Al-Rabadi, A.N.: Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer, Berlin (2012)MATH
39.
Zurück zum Zitat Perkowski, M., Al-Rabadi, A., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Azad Khan, M., Coppola, A., Yanushkevich, S., Shmerko, V., Jozwiak. L.: A general decomposition for reversible logic. In: Proceedings of RM, pp. 119–138 (2001) Perkowski, M., Al-Rabadi, A., Kerntopf, P., Buller, A., Chrzanowska-Jeske, M., Mishchenko, A., Azad Khan, M., Coppola, A., Yanushkevich, S., Shmerko, V., Jozwiak. L.: A general decomposition for reversible logic. In: Proceedings of RM, pp. 119–138 (2001)
40.
Zurück zum Zitat Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin–Toffoli reversible networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6), 765–769 (2005)CrossRef Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin–Toffoli reversible networks. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 13(6), 765–769 (2005)CrossRef
41.
Zurück zum Zitat Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)CrossRef Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(11), 2317–2330 (2006)CrossRef
42.
Zurück zum Zitat Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible toffoli networks. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(4), 42 (2007)CrossRef Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible toffoli networks. ACM Trans. Des. Autom. Electron. Syst. (TODAES) 12(4), 42 (2007)CrossRef
43.
Zurück zum Zitat Wille, R., Le, H.M., Dueck, G.W., Grobe, D.: Quantied synthesis of reversible logic. In: Design, Automation and Test in Europe. DATE’08, pp. 1015–1020. IEEE (2008) Wille, R., Le, H.M., Dueck, G.W., Grobe, D.: Quantied synthesis of reversible logic. In: Design, Automation and Test in Europe. DATE’08, pp. 1015–1020. IEEE (2008)
44.
Zurück zum Zitat Yang, G., Song, X., Hung, W.N., Perkowski, M.A.: Fast synthesis of exact minimal reversible circuits using group theory. In: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, pp. 1002–1005. ACM (2005) Yang, G., Song, X., Hung, W.N., Perkowski, M.A.: Fast synthesis of exact minimal reversible circuits using group theory. In: Proceedings of the 2005 Asia and South Pacific Design Automation Conference, pp. 1002–1005. ACM (2005)
45.
Zurück zum Zitat Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)CrossRef Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 22(6), 710–722 (2003)CrossRef
46.
Zurück zum Zitat Nagamani, A., Ashwin, S., Abhishek, B., Agrawal, V.: An exact approach for complete test set generation of Toffoli–Fredkin–Peres based reversible circuits. J. Electron. Test. 32(2), 175–196 (2016) Nagamani, A., Ashwin, S., Abhishek, B., Agrawal, V.: An exact approach for complete test set generation of Toffoli–Fredkin–Peres based reversible circuits. J. Electron. Test. 32(2), 175–196 (2016)
47.
Zurück zum Zitat Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe. Proceedings, pp. 1208-1213. IEEE (2005) Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification using templates. In: Design, Automation and Test in Europe. Proceedings, pp. 1208-1213. IEEE (2005)
48.
Zurück zum Zitat Lukac, M., Perkowski, M.: Evolving quantum circuits using genetic algorithm. In: Evolvable Hardware. Proceedings. NASA/DoD Conference on, pp. 177–185. IEEE (2002) Lukac, M., Perkowski, M.: Evolving quantum circuits using genetic algorithm. In: Evolvable Hardware. Proceedings. NASA/DoD Conference on, pp. 177–185. IEEE (2002)
49.
Zurück zum Zitat Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Genetic algorithm based quantum circuit synthesis with adaptive parameters control. In: Evolutionary Computation. CEC’09. IEEE Congress on, pp. 896–903. IEEE (2009) Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Genetic algorithm based quantum circuit synthesis with adaptive parameters control. In: Evolutionary Computation. CEC’09. IEEE Congress on, pp. 896–903. IEEE (2009)
50.
Zurück zum Zitat Bautu, A., Bautu, E.: Quantum circuit design by means of genetic programming. Roman. Phys. 52(5–7), 697–704 (2007)MATH Bautu, A., Bautu, E.: Quantum circuit design by means of genetic programming. Roman. Phys. 52(5–7), 697–704 (2007)MATH
51.
Zurück zum Zitat Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69(3), 032315 (2004)ADSCrossRef Vatan, F., Williams, C.: Optimal quantum circuits for general two-qubit gates. Phys. Rev. A 69(3), 032315 (2004)ADSCrossRef
52.
Zurück zum Zitat Williams, C.P., Gray, A.G.: Automated Design of Quantum Circuits. Springer, Berlin (1999)CrossRefMATH Williams, C.P., Gray, A.G.: Automated Design of Quantum Circuits. Springer, Berlin (1999)CrossRefMATH
53.
Zurück zum Zitat Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design-evolving a simpler teleportation circuit. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference. Citeseer, pp. 421–425 (2000) Yabuki, T., Iba, H.: Genetic algorithms for quantum circuit design-evolving a simpler teleportation circuit. In: Late Breaking Papers at the 2000 Genetic and Evolutionary Computation Conference. Citeseer, pp. 421–425 (2000)
54.
Zurück zum Zitat Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming approach, vol. 7. Springer, Berlin (2006)MATH Spector, L.: Automatic Quantum Computer Programming: A Genetic Programming approach, vol. 7. Springer, Berlin (2006)MATH
55.
Zurück zum Zitat Kameyama, M., Lukac, M., Perkowski, M.: Evolutionary Quantum Logic Synthesis of Boolean Reversible Logic Circuits Embedded in Ternary Quantum Space Using Heuristics, arXiv preprint arXiv:1107.3383 (2011) Kameyama, M., Lukac, M., Perkowski, M.: Evolutionary Quantum Logic Synthesis of Boolean Reversible Logic Circuits Embedded in Ternary Quantum Space Using Heuristics, arXiv preprint arXiv:​1107.​3383 (2011)
57.
Zurück zum Zitat Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2(4), 277–293 (2006)CrossRef Prasad, A.K., Shende, V.V., Markov, I.L., Hayes, J.P., Patel, K.N.: Data structures and algorithms for simplifying reversible circuits. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2(4), 277–293 (2006)CrossRef
58.
Zurück zum Zitat Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)CrossRef Hung, W.N., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output boolean functions using a set of quantum gates by symbolic reachability analysis. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 25(9), 1652–1663 (2006)CrossRef
59.
Zurück zum Zitat Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal nct three-qubit reversible circuits. Comput. Digit. Tech. IET 1(2), 98–104 (2007)CrossRef Maslov, D., Miller, D.M.: Comparison of the cost metrics through investigation of the relation between optimal NCV and optimal nct three-qubit reversible circuits. Comput. Digit. Tech. IET 1(2), 98–104 (2007)CrossRef
60.
Zurück zum Zitat Wille, R., Saeedi, M., Drechsler, R.: Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost. arXiv preprint arXiv:1004.4609 (2010) Wille, R., Saeedi, M., Drechsler, R.: Synthesis of Reversible Functions Beyond Gate Count and Quantum Cost. arXiv preprint arXiv:​1004.​4609 (2010)
61.
Zurück zum Zitat Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 849–854. IEEE Press (2010) Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible circuits. In: Proceedings of the 2010 Asia and South Pacific Design Automation Conference, pp. 849–854. IEEE Press (2010)
62.
Zurück zum Zitat Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1), 142–166 (2011)MathSciNetMATH Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient conversion of quantum circuits to a linear nearest neighbor architecture. Quantum Inf. Comput. 11(1), 142–166 (2011)MathSciNetMATH
63.
Zurück zum Zitat Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the boolean domain. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(6), 806–816 (2011)CrossRef Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the boolean domain. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 30(6), 806–816 (2011)CrossRef
64.
Zurück zum Zitat Z. Sasanian, R. Wille, and D.M. Miller, Realizing reversible circuits using a new class of quantum gates, In: Proceedings of the 49th Annual Design Automation Conference, pp. 36–41. ACM (2012) Z. Sasanian, R. Wille, and D.M. Miller, Realizing reversible circuits using a new class of quantum gates, In: Proceedings of the 49th Annual Design Automation Conference, pp. 36–41. ACM (2012)
65.
Zurück zum Zitat Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef Golubitsky, O., Maslov, D.: A study of optimal 4-bit reversible toffoli circuits and their synthesis. IEEE Trans. Comput. 61(9), 1341–1353 (2012)MathSciNetCrossRef
66.
Zurück zum Zitat Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013)CrossRef Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 32(6), 818–830 (2013)CrossRef
67.
Zurück zum Zitat Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of Clifford circuits via matroid partitioning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)CrossRef Amy, M., Maslov, D., Mosca, M.: Polynomial-time t-depth optimization of Clifford circuits via matroid partitioning. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 33(10), 1476–1489 (2014)CrossRef
68.
Zurück zum Zitat Sasamal, T.N., Singh, A.K., Mohan, A.: Reversible logic circuit synthesis and optimization using adaptive genetic algorithm. Proc. Comput. Sci. 70, 407–413 (2015)CrossRef Sasamal, T.N., Singh, A.K., Mohan, A.: Reversible logic circuit synthesis and optimization using adaptive genetic algorithm. Proc. Comput. Sci. 70, 407–413 (2015)CrossRef
69.
Zurück zum Zitat Hawash, M.M.: Methods for efficient synthesis of large reversible binary and ternary quantum circuits and applications of linear nearest neighbor model. Ph.D. dissertation, Portland State University (2013) Hawash, M.M.: Methods for efficient synthesis of large reversible binary and ternary quantum circuits and applications of linear nearest neighbor model. Ph.D. dissertation, Portland State University (2013)
72.
Zurück zum Zitat Saeedi, M., Zamani, M.S., Sedighi, M.: Moving forward: a non-search based synthesis method toward efficient cnot-based quantum circuit synthesis algorithms. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference, pp. 83–88. IEEE Computer Society Press (2008) Saeedi, M., Zamani, M.S., Sedighi, M.: Moving forward: a non-search based synthesis method toward efficient cnot-based quantum circuit synthesis algorithms. In: Proceedings of the 2008 Asia and South Pacific Design Automation Conference, pp. 83–88. IEEE Computer Society Press (2008)
73.
Zurück zum Zitat Li, M., Zheng, Y., Hsiao, M.S., Huang, C.: Reversible logic synthesis through ant colony optimization. In: 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010), pp. 307–310. IEEE (2010) Li, M., Zheng, Y., Hsiao, M.S., Huang, C.: Reversible logic synthesis through ant colony optimization. In: 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010), pp. 307–310. IEEE (2010)
74.
Zurück zum Zitat Wille, R., Grobe, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design, pp. 189–194. IEEE (2009) Wille, R., Grobe, D., Dueck, G.W., Drechsler, R.: Reversible logic synthesis with output permutation. In: 2009 22nd International Conference on VLSI Design, pp. 189–194. IEEE (2009)
Metadaten
Titel
Reversible circuit synthesis by genetic programming using dynamic gate libraries
verfasst von
Mustapha Y. Abubakar
Low Tang Jung
Nordin Zakaria
Ahmed Younes
Abdel-Haleem Abdel-Aty
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 6/2017
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-017-1609-8

Weitere Artikel der Ausgabe 6/2017

Quantum Information Processing 6/2017 Zur Ausgabe

Neuer Inhalt