Skip to main content
Erschienen in: Quantum Information Processing 6/2018

01.06.2018

Establishing rational networking using the DL04 quantum secure direct communication protocol

verfasst von: Huawang Qin, Wallace K. S. Tang, Raylin Tso

Erschienen in: Quantum Information Processing | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The first rational quantum secure direct communication scheme is proposed, in which we use the game theory with incomplete information to model the rational behavior of the participant, and give the strategy space and utility function. The rational participant can get his maximal utility when he performs the protocol faithfully, and then the Nash equilibrium of the protocol can be achieved. Compared to the traditional schemes, our scheme will be more practical in the presence of rational participant.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pp. 175–179 (1984)
2.
Zurück zum Zitat Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)ADSCrossRef
3.
Zurück zum Zitat Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRef
4.
Zurück zum Zitat Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef Hu, J.Y., Yu, B., Jing, M.Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)CrossRef
5.
Zurück zum Zitat Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef Zhang, W., Ding, D.S., Sheng, Y.B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)ADSCrossRef
6.
Zurück zum Zitat Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)CrossRef Zhu, F., Zhang, W., Sheng, Y., et al.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)CrossRef
7.
Zurück zum Zitat Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef Bostrom, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)ADSCrossRef
8.
Zurück zum Zitat Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRef
9.
Zurück zum Zitat Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRef Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRef
10.
Zurück zum Zitat Xia, Y., Fu, C.B., Li, F.Y., et al.: Controlled secure direct communication by using GHZ entangled state. J. Korean Phys. Soc. 47, 753–756 (2005) Xia, Y., Fu, C.B., Li, F.Y., et al.: Controlled secure direct communication by using GHZ entangled state. J. Korean Phys. Soc. 47, 753–756 (2005)
11.
Zurück zum Zitat Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRef Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)ADSCrossRef
12.
Zurück zum Zitat Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359–365 (2006)ADSCrossRefMATH Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys. Lett. A 359, 359–365 (2006)ADSCrossRefMATH
13.
Zurück zum Zitat Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719–3724 (2007)ADSCrossRef Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40, 3719–3724 (2007)ADSCrossRef
14.
Zurück zum Zitat Xiu, X.M., Dong, H.K., Li, D., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entangled swapping. Opt. Commun. 282, 2457–2459 (2009)ADSCrossRef Xiu, X.M., Dong, H.K., Li, D., Gao, Y.J., Chi, F.: Deterministic secure quantum communication using four-particle genuine entangled state and entangled swapping. Opt. Commun. 282, 2457–2459 (2009)ADSCrossRef
15.
Zurück zum Zitat Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8, 443–450 (2010)CrossRefMATH Wang, C., Hao, L., Song, S.Y., et al.: Quantum direct communication based on quantum search algorithm. Int. J. Quantum Inf. 8, 443–450 (2010)CrossRefMATH
16.
Zurück zum Zitat Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491–495 (2010)ADSCrossRef Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491–495 (2010)ADSCrossRef
17.
Zurück zum Zitat Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)ADSCrossRef Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)ADSCrossRef
18.
Zurück zum Zitat Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831–836 (2011)ADSCrossRefMATH Shi, J., Gong, Y.X., Xu, P., Zhu, S.N., Zhan, Y.B.: Quantum secure direct communication by using three-dimensional hyperentanglement. Commun. Theor. Phys. 56, 831–836 (2011)ADSCrossRefMATH
19.
Zurück zum Zitat Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)CrossRefMATH Liu, D., Chen, J.L., Jiang, W.: High-capacity quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 51, 2923–2929 (2012)CrossRefMATH
20.
Zurück zum Zitat Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013)ADSMathSciNetCrossRefMATH Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12, 3835–3844 (2013)ADSMathSciNetCrossRefMATH
21.
Zurück zum Zitat Yu, C.H., Guo, G.D., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. 52, 1937–1945 (2013)MathSciNetCrossRef Yu, C.H., Guo, G.D., Lin, S.: Quantum secure direct communication with authentication using two nonorthogonal states. Int. J. Theor. Phys. 52, 1937–1945 (2013)MathSciNetCrossRef
22.
Zurück zum Zitat Kao, S.H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process. 12, 3791–3805 (2013)ADSMathSciNetCrossRefMATH Kao, S.H., Hwang, T.: Multiparty controlled quantum secure direct communication based on quantum search algorithm. Quantum Inf. Process. 12, 3791–3805 (2013)ADSMathSciNetCrossRefMATH
23.
Zurück zum Zitat Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)ADSMathSciNetCrossRefMATH Yadav, P., Srikanth, R., Pathak, A.: Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique. Quantum Inf. Process. 13, 2731–2743 (2014)ADSMathSciNetCrossRefMATH
24.
Zurück zum Zitat Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)ADSCrossRef Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein–Podolsky–Rosen pairs. Sci. China Phys. Mech. Astron. 57, 1238–1243 (2014)ADSCrossRef
25.
Zurück zum Zitat Li, W.L., Chen, J.B., Wang, X.L., Li, C.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54, 100–105 (2015)MathSciNetCrossRefMATH Li, W.L., Chen, J.B., Wang, X.L., Li, C.: Quantum secure direct communication achieved by using multi-entanglement. Int. J. Theor. Phys. 54, 100–105 (2015)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Li, Y.B., Song, T.T., Huang, W., Zhan, W.W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54, 589–597 (2015)MathSciNetCrossRefMATH Li, Y.B., Song, T.T., Huang, W., Zhan, W.W.: Fault-tolerant quantum secure direct communication protocol based on decoherence-free states. Int. J. Theor. Phys. 54, 589–597 (2015)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137–2154 (2016)ADSMathSciNetCrossRefMATH Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137–2154 (2016)ADSMathSciNetCrossRefMATH
28.
Zurück zum Zitat Wang, H., Zhang, Y.Q., Liu, X.F., et al.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593–2603 (2016)ADSMathSciNetCrossRefMATH Wang, H., Zhang, Y.Q., Liu, X.F., et al.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593–2603 (2016)ADSMathSciNetCrossRefMATH
29.
Zurück zum Zitat Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15, 947–958 (2016)ADSMathSciNetCrossRefMATH Luo, Y.P., Hwang, T.: Authenticated semi-quantum direct communication protocols using Bell states. Quantum Inf. Process. 15, 947–958 (2016)ADSMathSciNetCrossRefMATH
30.
Zurück zum Zitat Guerra, A.G.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15, 4747–4758 (2016)ADSMathSciNetCrossRefMATH Guerra, A.G.A.H., Rios, F.F.S., Ramos, R.V.: Quantum secure direct communication of digital and analog signals using continuum coherent states. Quantum Inf. Process. 15, 4747–4758 (2016)ADSMathSciNetCrossRefMATH
31.
Zurück zum Zitat Yang, L., Ma, H.Y., Zheng, C., et al.: Quantum communication scheme based on quantum teleportation. Acta Physica Sin. 66, 230303 (2017). (in Chinese) Yang, L., Ma, H.Y., Zheng, C., et al.: Quantum communication scheme based on quantum teleportation. Acta Physica Sin. 66, 230303 (2017). (in Chinese)
32.
Zurück zum Zitat Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46–68 (2017)CrossRef Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46–68 (2017)CrossRef
33.
Zurück zum Zitat Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef Wu, F.Z., Yang, G.J., Wang, H.B., et al.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)ADSCrossRef
34.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025–1029 (2017)CrossRef Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025–1029 (2017)CrossRef
35.
Zurück zum Zitat Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)ADSCrossRefMATH Zhou, N.R., Li, J.F., Yu, Z.B., et al.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017)ADSCrossRefMATH
36.
Zurück zum Zitat Wang, S.K., Zha, X.W., Wu, H.: Controlled secure direct communication with seven-qubit entangled states. Int. J. Theor. Phys. 57, 48–58 (2018)CrossRefMATH Wang, S.K., Zha, X.W., Wu, H.: Controlled secure direct communication with seven-qubit entangled states. Int. J. Theor. Phys. 57, 48–58 (2018)CrossRefMATH
37.
Zurück zum Zitat Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 623–632. ACM Press, New York (2004) Halpern, J., Teague, V.: Rational secret sharing and multiparty computation. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 623–632. ACM Press, New York (2004)
38.
Zurück zum Zitat Kol, G., Naor, M.: Cryptography and game theory: design protocols for exchanging information. In: Proceedings of the 5th Theory of Cryptography Conference, pp. 320–339. Springer, Berlin (2008) Kol, G., Naor, M.: Cryptography and game theory: design protocols for exchanging information. In: Proceedings of the 5th Theory of Cryptography Conference, pp. 320–339. Springer, Berlin (2008)
39.
Zurück zum Zitat Fuchsbauer, G., Katz, J., Naccache, D.: Efficient secret sharing in the standard communication model. In: Proceedings of the 7th Theory of Cryptography Conference, pp. 419–436. Springer, Berlin (2010) Fuchsbauer, G., Katz, J., Naccache, D.: Efficient secret sharing in the standard communication model. In: Proceedings of the 7th Theory of Cryptography Conference, pp. 419–436. Springer, Berlin (2010)
40.
Zurück zum Zitat Zhang, Z.F., Liu, M.L.: Rational secret sharing as extensive game. Sci. China Inf. Sci. 56, 1–13 (2013)MathSciNet Zhang, Z.F., Liu, M.L.: Rational secret sharing as extensive game. Sci. China Inf. Sci. 56, 1–13 (2013)MathSciNet
41.
Zurück zum Zitat Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)ADSCrossRef Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92, 022305 (2015)ADSCrossRef
42.
Zurück zum Zitat Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications, 3rd edn, pp. 5–10, 202–235. Addison-Wesley, Boston (1979) Linstone, H.A., Turoff, M.: The Delphi Method: Techniques and Applications, 3rd edn, pp. 5–10, 202–235. Addison-Wesley, Boston (1979)
43.
Zurück zum Zitat Okoli, C., Pawlowski, S.D.: The Delphi method as a research tool: an example, design considerations and applications. Inf. Manag. 42, 15–29 (2004)CrossRef Okoli, C., Pawlowski, S.D.: The Delphi method as a research tool: an example, design considerations and applications. Inf. Manag. 42, 15–29 (2004)CrossRef
44.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)ADSCrossRef Sheng, Y.B., Zhou, L.: Deterministic polarization entanglement purification using time-bin entanglement. Laser Phys. Lett. 11, 085203 (2014)ADSCrossRef
45.
Zurück zum Zitat Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)CrossRef Sheng, Y.B., Zhou, L.: Deterministic entanglement distillation for secure double-server blind quantum computation. Sci. Rep. 5, 7815 (2015)CrossRef
46.
Zurück zum Zitat Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)ADSMathSciNetCrossRefMATH Liu, H.J., Xia, Y., Song, J.: Efficient hyperentanglement concentration for N-particle Greenberger–Horne–Zeilinger state assisted by weak cross-Kerr nonlinearity. Quantum Inf. Process. 15, 2033–2052 (2016)ADSMathSciNetCrossRefMATH
47.
Zurück zum Zitat Liu, H.J., Fan, L.L., Xia, Y., et al.: Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf. Process. 14, 2909–2928 (2015)ADSMathSciNetCrossRefMATH Liu, H.J., Fan, L.L., Xia, Y., et al.: Efficient entanglement concentration for partially entangled cluster states with weak cross-Kerr nonlinearity. Quantum Inf. Process. 14, 2909–2928 (2015)ADSMathSciNetCrossRefMATH
48.
Zurück zum Zitat Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state. Laser Phys. Lett. 12, 045203 (2015)ADSCrossRef
49.
Zurück zum Zitat Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635–651 (2015)ADSMathSciNetCrossRefMATH Ou-Yang, Y., Feng, Z.F., Zhou, L., Sheng, Y.B.: Protecting single-photon entanglement with imperfect single-photon source. Quantum Inf. Process. 14, 635–651 (2015)ADSMathSciNetCrossRefMATH
50.
51.
Zurück zum Zitat Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)ADSCrossRefMATH Chen, R.K., Zhang, Y.Y., Shi, J.H., Li, F.G.: A multiparty error-correcting method for quantum secret sharing. Quantum Inf. Process. 13, 21–31 (2014)ADSCrossRefMATH
52.
Zurück zum Zitat Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADSCrossRef Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729–4732 (2000)ADSCrossRef
53.
Zurück zum Zitat Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 1–14 (2002) Hughes, R.J., Nordholt, J.E., Derkacs, D., Peterson, C.G.: Practical free-space quantum key distribution over 10 km in daylight and at night. New J. Phys. 43, 1–14 (2002)
54.
Zurück zum Zitat Stucki, D., Gisin, N., Guinnard, O., et al.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 1–8 (2002) Stucki, D., Gisin, N., Guinnard, O., et al.: Quantum key distribution over 67 km with a plug&play system. New J. Phys. 41, 1–8 (2002)
55.
Zurück zum Zitat Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRef Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89, 187901 (2002)ADSCrossRef
56.
Zurück zum Zitat Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRef Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km standard telecom fiber. Appl. Phys. Lett. 84, 3762–3764 (2004)ADSCrossRef
57.
Zurück zum Zitat Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRef
58.
Zurück zum Zitat Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRef Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRef
59.
Zurück zum Zitat Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef Jakobi, M., Simon, C., Gisin, N., et al.: Practical private database queries based on a quantum-key-distribution protocol. Phys. Rev. A 83, 022301 (2011)ADSCrossRef
60.
Zurück zum Zitat Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 6600111 (2015) Gao, F., Liu, B., Huang, W., Wen, Q.Y.: Postprocessing of the oblivious key in quantum private query. IEEE J. Sel. Top. Quantum Electron. 21, 6600111 (2015)
61.
Zurück zum Zitat Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRef Wei, C.Y., Wang, T.Y., Gao, F.: Practical quantum private query with better performance in resisting joint-measurement attack. Phys. Rev. A 93, 042318 (2016)ADSCrossRef
62.
Zurück zum Zitat Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRef Wei, C.Y., Cai, X.Q., Liu, B., et al.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2–8 (2018)MathSciNetCrossRef
Metadaten
Titel
Establishing rational networking using the DL04 quantum secure direct communication protocol
verfasst von
Huawang Qin
Wallace K. S. Tang
Raylin Tso
Publikationsdatum
01.06.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 6/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1925-7

Weitere Artikel der Ausgabe 6/2018

Quantum Information Processing 6/2018 Zur Ausgabe

Neuer Inhalt