Skip to main content
Log in

On linear complexity of binary lattices, II

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

The linear complexity is an important and frequently used measure of unpredictably and pseudorandomness of binary sequences. In Part I of this paper, we extended this notion to two dimensions: we defined and studied the linear complexity of binary and bit lattices. In this paper, first we will estimate the linear complexity of a truly random bit (M,N)-lattice. Next we will extend the notion of k-error linear complexity to bit lattices. Finally, we will present another alternative definition of linear complexity of bit lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aly, H., Meidl, W., Winterhof, A.: On the k-error linear complexity of cyclomatic sequences. J. Math. Cryptol. 1, 283–296 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Gyarmati, K., Mauduit, C., Sárközy, A.: On the linear complexity of binary lattices. Ramanujan J. (2012) doi:10.1007/s11139-012-9433-3

    Google Scholar 

  3. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of families of binary lattices, I. (Definitions, a construction using quadratic characters). Publ. Math. (Debr.) 79, 445–460 (2011)

    Article  MATH  Google Scholar 

  4. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of families of binary lattices, II. (A further construction). Publ. Math. (Debr.) 80, 481–504 (2012)

    Google Scholar 

  5. Gyarmati, K., Mauduit, C., Sárközy, A.: Measures of pseudorandomness of finite binary lattices, III. (Q k , correlation, normality, minimal values). Unif. Distrib. Theory 5, 183–207 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Hubert, P., Mauduit, C., Sárközy, A.: On pseudorandom binary lattices. Acta Arith. 125, 51–62 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Landau, E.: Handbuch der Lehre der Verteilung der Primzahlen, I–II, 2nd edn. Chelsea, New York (1953)

    Google Scholar 

  8. Mauduit, C., Sárközy, A.: On finite pseudorandom binary sequences, I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 82, 365–377 (1997)

    MATH  MathSciNet  Google Scholar 

  9. Rueppel, R.A.: Linear complexity and random sequences. In: Proc. Advances in Cryptology—EUROCRYPT ’85. LNCS, Linz, Austria, April 9–12, vol. 219, pp. 167–188 (1985)

    Google Scholar 

  10. Stamp, M., Martin, C.F.: An algorithm for the k-error linear complexity of binary sequences with period 2n. IEEE Trans. Inf. Theory 39(4), 1398–1401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Wigert, S.: Sur l’ordre de grandeur du nombre des diviseurs d’un entier. In: Arkiv för Matematik, Astronomi Och. Fysik, vol. 3 (1906–1907). 9 p.

    Google Scholar 

  12. Winterhof, A.: Linear complexity and related complexity measures. In: Woungang, I. (ed.) Selected Topics in Information and Coding Theory 7, pp. 3–40. World Scientific, Singapore (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Gyarmati.

Additional information

Research partially supported by ERC-AdG.228005, Hungarian National Foundation for Scientific Research Grants Nos. K100291 and NK104183, the János Bolyai Research Fellowship, the Agence Nationale de la Recherche grant ANR-10-BLAN 0103 MUNUM and French-Hungarian exchange program TÉT-09-01-2010-0056.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyarmati, K., Mauduit, C. & Sárközy, A. On linear complexity of binary lattices, II. Ramanujan J 34, 237–263 (2014). https://doi.org/10.1007/s11139-013-9500-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-013-9500-4

Keywords

Mathematics Subject Classification

Navigation