Skip to main content
Log in

Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

Iron (Fe3+) loaded TiO2 nanocatalysts were prepared by the photochemical reduction process. These supported nanocatalysts were characterized by X-ray diffraction (XRD), surface area (BET) measurements, scanning electron microscopy SEM with energy dispersive X-ray (EDX-elemental mapping) analysis and atomic force microscopy (AFM) with adhesion force measurements. XRD and BET results showed adsorption of iron species on the surface of the TiO2 support. AFM and SEM images revealed obvious variations in the surface morphology of the support after loaded with Fe3+ ions. Photocatalytic activities of the supported nanocatalysts were examined for decolorization and degradation processes of Congo red (CR) under UV irradiation. Fe3+ ions improved the performances of the supported nanocatalysts by suppressing the electron–hole recombination reactions. Effects of Fe3+ ion content and initial CR concentration were investigated. A tentative model was proposed for the photocatalytic degradation of CR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonancêa CE, do Nascimento GM, de Souza ML, Temperini MLA, Corio P (2006) Appl Catal B 69:34–42

    Article  Google Scholar 

  2. Lachheb H, Puzenat E, Houas A, Ksibi M, Elaloui E, Guillard C, Herrmann JM (2002) Appl Catal B 39:75–90

    Article  CAS  Google Scholar 

  3. Comparelli R, Fanizza E, Curri ML, Cozzoli PD, Mascolo G, Passino R, Agostiano A (2005) Appl Catal B 55:81–91

    Article  CAS  Google Scholar 

  4. Prevot AB, Baiocchi C, Brussino MC, Pramauro E, Savarino P, Augugliaro V, Marci G, Palmisano L (2001) Environ Sci Technol 35:971–976

    Article  CAS  Google Scholar 

  5. Bouras P, Stathatos E, Lianos P, Tsakiroglou C (2004) Appl Catal B 51:275–281

    Article  CAS  Google Scholar 

  6. Fujishima A, Rao TN, Truk DA (2000) J Photochem Photobiol C 1:1–21

    Article  CAS  Google Scholar 

  7. Li GQ, Liu CY, Liu Y (2006) Appl Surf Sci 253:2481–2486

    Article  CAS  Google Scholar 

  8. Cazla P, Minero C, Pelizzetti E (1997) Environ Sci Technol 31:2198–2203

    Article  Google Scholar 

  9. Kang M (2002) Appl Catal B 37:187–196

    Article  CAS  Google Scholar 

  10. Engweiler J, Harf J, Baiker A (1996) J Catal 159:259–269

    Article  CAS  Google Scholar 

  11. Poznyak SK, Talapin D, Kulak A (2001) J Phys Chem B 105:4816–4823

    Article  CAS  Google Scholar 

  12. Choi W, Temrin A, Hoffmann MR (1994) J Phys Chem 98:13669–13679

    Article  Google Scholar 

  13. Justicia I, Ordejón P, Canto G, Mozos JL, Fraxedas J, Battiston GA, Gerbasi R, Figueras A (2002) Adv Mater 14:1399–1402

    Article  CAS  Google Scholar 

  14. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  15. Khan SUM, Al-Shahry M, Ingler WB Jr (2002) Science 297:2243–2245

    Article  CAS  Google Scholar 

  16. Navío JA, Colón G, Macías M, Real C, Litter MI (1999) Appl Catal A 177:111–120

    Article  Google Scholar 

  17. Navío JA, Testa JJ, Djedjeian P, Pardón JR, Rodríguez D, Litter MI (1999) Appl Catal A 178:191–203

    Article  Google Scholar 

  18. Wang C, Bottler C, Bahnemann DW, Dohrmann JK (2003) J Mater Chem 13:2322–2329

    Article  CAS  Google Scholar 

  19. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Appl Catal A 359:25–40

    Article  CAS  Google Scholar 

  20. Khaleel A, Al-Nayli A (2008) Appl Catal B 80:176–184

    Article  CAS  Google Scholar 

  21. Mazille F, Schoettl T, Pulgarin C (2009) Appl Catal B 89:635–644

    Article  CAS  Google Scholar 

  22. Mazille F, Lopez A, Pulgarin C (2009) Appl Catal B 90:321–329

    Article  CAS  Google Scholar 

  23. Hung WC, Chen YC, Chu H, Tseng TK (2008) Appl Surf Sci 255:2205–2213

    Article  CAS  Google Scholar 

  24. Tong T, Zhang J, Tian B, Chen F, He D (2008) J Hazard Mater 155:572–579

    Article  CAS  Google Scholar 

  25. Asiltürk M, Sayıklan F, Arpaç E (2009) J Photochem Photobiol A 203:64–71

    Article  Google Scholar 

  26. Zhang Z, Wang C, Zakaria R, Ying CY (1998) J Phys Chem B 102:10871–10878

    Article  CAS  Google Scholar 

  27. Litter MI, Navigo J (1996) J Photochem Photobiol A 98:171–181

    Article  CAS  Google Scholar 

  28. Yamashita H, Harada M, Misaka J, Takeuchi M, Neppolian B, Anpo M (2003) Catal Today 84:191–196

    Article  CAS  Google Scholar 

  29. Navío JA, Colón G, Litter MI, Bianco GN (1996) J Mol Catal A 106:267–276

    Article  Google Scholar 

  30. Zhu JF, Zheng W, He B, Zhang JL, Anpo M (2004) J Mol Catal A 216:35–43

    CAS  Google Scholar 

  31. Kang M, Lee JH, Chung CH, Yoon KJ, Ogino K, Miyata S, Choung SJ (2003) J Mol Catal A 193:273–283

    Article  CAS  Google Scholar 

  32. Zhu YF, Zhang L, Wang L, Fu Y, Gao LL (2001) J Mater Chem 11:1864–1868

    Article  CAS  Google Scholar 

  33. Balasubramanian G, Dionysiou DD, Suidan MT, Subramanian Y, Baudin I, Laine JM (2003) J Mater Sci 38:823–831

    Article  CAS  Google Scholar 

  34. Li FB, Li XZ (2002) Chemosphere 48:1103–1111

    Article  CAS  Google Scholar 

  35. Galindo C, Jacques P, Kalt A (2000) J Photochem Photobiol A 130:35–47

    Article  CAS  Google Scholar 

  36. Easwaramoorthi S, Natarajan (2009) Microporous Mesoporous Mater 117:541–550

    Article  CAS  Google Scholar 

  37. Demeestere K, Dewulf J, Ohno T, Salgado PH, van Langenhove H (2005) Appl Catal B 61:140–149

    Article  CAS  Google Scholar 

  38. Xie Y, Yuan C (2003) Appl Catal B 46:251–259

    Article  CAS  Google Scholar 

  39. Ganguly A, De Sarkar M, Bhowmick AK (2007) J Polym Sci B 45:52–66

    Article  CAS  Google Scholar 

  40. Muralidharan B, Kalaignan GP, Manisankar P, Gopalan A, Vasudevan TE, Nevaditha NT (1995) Bull Electrochem 11:206–209

    CAS  Google Scholar 

  41. Soma Y, Soma M, Harada I (1985) J Phys Chem 89:738–742

    Article  CAS  Google Scholar 

  42. Yang Y, Guo Y, Hu C, Wang Y, Wang E (2004) Appl Catal A 273:201–210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author gratefully thanks the financial support of Boğaziçi University Research Foundation (Project No. 08B504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neren Ökte.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 914 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neren Ökte, A., Akalın, Ş. Iron (Fe3+) loaded TiO2 nanocatalysts: characterization and photoreactivity. Reac Kinet Mech Cat 100, 55–70 (2010). https://doi.org/10.1007/s11144-010-0168-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-010-0168-0

Keywords

Navigation