Skip to main content
Log in

Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

By combing ZnO with the silicon hydroxyl in USY, a series of Cu/ZnO-USY catalysts with both acid and base sites were prepared with the precipitation method and used in the hydrogenolysis of glycerol to propanediol. The Cu/USY and Cu/ZnO catalysts were also prepared with the same method and used as blanks. These catalysts were fully characterized with TEM, SEM, BET, XRD, NH3-TPD, CO2-TPD and H2-TPR. The combination of ZnO with the surface silicon hydroxyl of USY generated new “core–shell like” structure and introduced base sites. This newly formed structure made the Cu particle (10 nm) highly dispersed on the catalyst and the acid–base co-operativity accelerated the glycerol dehydration and led to higher glycerol conversion and 1,3-propanediol (1,3-PDO) selectivity with much short time (5 h). Catalyst deactivation was also investigated, mainly caused by the increase of the Cu particle size during the hydrogenolysis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu HJ, Xu YZ, Zheng ZM, Liu DH (2010) Biotechnol J 5:1137–1148

    Article  CAS  Google Scholar 

  2. Saxena RK, Anand P, Saran S, Isar J, Agarwal L (2010) Indian J Microbiol 50:2–11

    Article  CAS  Google Scholar 

  3. Martin A, Armbruster U, Gandarias I, Arias PL (2013) Eur J Lipid Sci Technol 115:9–27

    Article  CAS  Google Scholar 

  4. Zhou CHC, Beltramini JN, Fan YX, Lu GQM (2008) Chem Soc Rev 37:527–549

    Article  Google Scholar 

  5. Quispe CAG, Coronado CJR, Carvalho JA (2013) Renew Sustain Energy Rev 27:475–493

    Article  CAS  Google Scholar 

  6. Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kanede K (2012) Chem Lett 41:1720–1722

    Article  Google Scholar 

  7. Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) J Catal 251:281–294

    Article  CAS  Google Scholar 

  8. Vasiliadou ES, Lemonidou AA (2011) Org Process Res Dev 15:925–931

    Article  CAS  Google Scholar 

  9. Yue CJ, Gu LP, Su Y, Zhu SP (2014) Reac Kinet Mech Cat 111:633–645

    Article  CAS  Google Scholar 

  10. Miranda BC, Chimentao RJ, Santos JBO, Gispert-Guirado F, Llorca J, Medina F, Bonillo FL, Sueiras JE (2014) Appl Catal B 147:464–480

    Article  CAS  Google Scholar 

  11. Schmidt SR, Tanielyan SK, Marin N, Alvez G, Augustine RL (2010) Top Catal 53:1214–1216

    Article  CAS  Google Scholar 

  12. Jimenez-Morales I, Vila F, Mariscal R, Jimenez-Lopez A (2012) Appl Catal B 117:253–259

    Article  Google Scholar 

  13. Feng J, Xiong W, Jia Y, Wang JB, Liu DR, Chen H, Li XJ (2011) Chin J Catal 32:1545–1549

    Article  CAS  Google Scholar 

  14. Sanchez T, Salagre P, Cesteros Y, Bueno-Lopez A (2012) Chem Eng J 179:302–311

    Article  CAS  Google Scholar 

  15. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Catal Commun 9:1360–1363

    Article  CAS  Google Scholar 

  16. Liu LJ, Zhang YH, Wang AQ, Zhang T (2012) Chin J Catal 33:1257–1261

    Article  CAS  Google Scholar 

  17. Zhu SH, Qiu YN, Zhu YL, Hao SL, Zheng HY, Li YW (2013) Catal Today 212:120–126

    Article  CAS  Google Scholar 

  18. Feng J, Xiong W, Xu B, Jiang WD, Wang JB, Chen H (2014) Catal Commun 46:98–102

    Article  CAS  Google Scholar 

  19. ten Dam J, Djanashvili K, Kapteijn F, Hanefeld U (2013) Chemcatchem 5:497–505

    Article  Google Scholar 

  20. Miyazawa T, Kusunoki Y, Kunimori K, Tomishige K (2006) J Catal 240:213–221

    Article  CAS  Google Scholar 

  21. Marinoiu A, Cobzaru C, Carcadea E, Capris C, Tanislav V, Raceanu M (2013) Reac Kinet Mech Cat 110:63–73

    Article  CAS  Google Scholar 

  22. Furikado I, Miyazawa T, Koso S, Shimao A, Kunimori K, Tomishige K (2007) Green Chem 9:582–588

    Article  CAS  Google Scholar 

  23. Nakagawa Y, Ning XH, Amada Y, Tomishige K (2012) Appl Catal A 433:128–134

    Article  Google Scholar 

  24. Xia SX, Zheng LP, Nie RF, Chen P, Lou H, Hou ZY (2013) Chin J Catal 34:986–992

    Article  CAS  Google Scholar 

  25. Rode CV, Mane RB, Potdar AS, Patil PB, Niphadkar PS, Joshi PN (2012) Catal Today 190:31–37

    Article  CAS  Google Scholar 

  26. Hu JY, Liu XY, Wang B, Pei Y, Qiao MH, Fan KN (2012) Chin J Catal 33:1266–1275

    Article  CAS  Google Scholar 

  27. Hong WJ, Iwamoto S, Inoue M (2011) Catal Today 164:489–494

    Article  CAS  Google Scholar 

  28. Niu L, Wei RP, Jiang F, Zhou MH, Liu CY, Xiao GM (2014) Reac Kinet Mech Cat 113:543–556

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Natural Science Foundation of China (No. 20906013, No. 21276050, No. 21406034) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomin Xiao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2393 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, L., Wei, R., Li, C. et al. Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol. Reac Kinet Mech Cat 115, 377–388 (2015). https://doi.org/10.1007/s11144-015-0838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-015-0838-z

Keywords

Navigation