Skip to main content

Advertisement

Log in

Well-Dispersed Carbon Nanotubes for Greatly Enhanced Mechanical Properties of Alumina-Based Composites

  • Published:
Refractories and Industrial Ceramics Aims and scope

Multi-wall carbon nanotubes (MWCNTs) reinforced Al2O3 composites (MWCNTs/Al2O3) have been prepared by a hot-pressing method, and the mechanical properties of the composites are investigated. Compared with the pure alumina, when adding 1.5 wt.% MWCNTs into the Al2O3 matrix, the composites have much higher flexure strength (403.6 MPa) and fracture toughness (4.21 MPa·m1/2), which shows a simultaneous increase of 38% in flexure strength and 35% in fracture toughness. The microstructural observations of MWCNTs/Al2O3 composites show that MWCNTs are homogeneously dispersed and embedded strongly in the alumina matrix due to the electrostatic interaction between MWCNTs and Al2O3, resulting in great improvement of flexure strength and fracture toughness. The reinforcement mechanism of the composites is mainly the pullout of MWCNTs from the matrix, MWCNTs bridging and crack deflection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. H. Ohnabe, S. Masaki, M. Onozuka, K. Miyahara, and T. Sasa, “Potential application of ceramic matrix composites to aero-engine components,” Appl. Sci. Manuf. Part A, 30, 489 – 496 (1999).

    Article  Google Scholar 

  2. O. L. Ighodaro and O. I. Okoli, “Fracture toughness enhancement for alumina systems: a review,” Int. J. Appl. Ceram. Technol., 5, 313 – 323 (2008).

    Article  Google Scholar 

  3. O. Zhou, H. Shimoda, B. Gao, S. Oh, L. Fleming, and G. Yue, “Materials science of carbon nanotubes: fabrication, integration, and properties of macroscopic structures of carbon nanotubes,” Acc. Chem. Res., 35, 1045 – 1053 (2002).

    Article  Google Scholar 

  4. J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham, and L. Forro, “Elastic modulus of ordered and disordered multiwalled carbon nanotubes,” Adv. Mater., 11, 161 – 165 (1999).

    Article  Google Scholar 

  5. J. P. Salvetat, J. M. Bonard, N. Thomson, A. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, “Mechanical properties of carbon nanotubes,” Appl. Phys. A, 69, 255 – 260 (1999).

    Article  Google Scholar 

  6. D. Walters, L. Ericson, M. Casavant, J. Liu, D. Colbert, K. Smith, and R. Smalley, “Elastic strain of freely suspended single-wall carbon nanotube ropes,” Appl. Phys. Lett., 74, 3803 – 3805 (1999).

    Article  Google Scholar 

  7. R. S. Ruoff and D. C. Lorents, “Mechanical and thermal properties of carbon nanotubes,” Carbon, 33, 925 – 930 (1995).

    Article  Google Scholar 

  8. L. Vaccarini, C. Goze, L. Henrard, E. Hernandez, P. Bernier, and A. Rubio, “Mechanical and electronic properties of carbon and boron–nitride nanotubes,” Carbon, 38, 1681 – 1690 (2000).

    Article  Google Scholar 

  9. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, “Structural flexibility of carbon nanotubes,” J. Chem. Phys., 104, 2089 – 2092 (1996).

    Article  Google Scholar 

  10. J. Huang, S. Chen, Z. Wang, K. Kempa, Y. Wang, S. Jo, G. Chen, M. Dresselhaus, and Z. Ren, “Superplastic carbon nanotubes,” Nature, 439, 281 (2006).

    Article  Google Scholar 

  11. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, 56 – 58 (1991).

    Article  Google Scholar 

  12. M. Treacy, T. Ebbesen, and J. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes,” Nature, 381, 678 – 680 (1996).

    Article  Google Scholar 

  13. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham, and L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Phys. Rev. Lett., 82, 944 (1999).

    Article  Google Scholar 

  14. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Lett., 84, 5552 (2000).

    Article  Google Scholar 

  15. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load,” Science, 287, 637 – 640 (2000).

    Article  Google Scholar 

  16. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single-walled carbon nanotube–polymer composites: strength and weakness,” Adv. Mater., 12, 750 – 753 (2000).

    Article  Google Scholar 

  17. S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Drury, B. McCarthy, and S. Maier, “A composite from poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and carbon nanotubes: A novel material for molecular optoelectronics,” Adv. Mater., 10, 1091 – 1093 (1998).

    Article  Google Scholar 

  18. J. Sandler, M. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. Windle, “Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties,” Polymer, 40, 5967 – 5971 (1999).

    Article  Google Scholar 

  19. R. Ma, J. Wu, B. Wei, J. Liang, and D. Wu, “Processing and properties of carbon nanotubes–nano-SiC ceramic,” J. Mater. Sci., 33, 5243 – 5246 (1998).

    Article  Google Scholar 

  20. C. Laurent, A. Peigney, O. Dumortier, and A. Rousset, “Carbon nanotubes–Fe–alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-Pressed composites,” J. Eur. Ceram. Soc., 18, 2005 – 2013 (1998).

    Article  Google Scholar 

  21. X. Wang, N. P. Padture, and H. Tanaka, “Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites,” Nat. Mater., 3, 539 – 544 (2004).

    Article  Google Scholar 

  22. T. Wei, Z. Fan, G. Luo, and F. Wei, “A new structure for multi-walled carbon nanotubes reinforced alumina nanocomposite with high strength and toughness,” Mater. Lett., 62, 641 – 644 (2008).

    Article  Google Scholar 

  23. I. Ahmad, M. Unwin, H. Cao, H. Chen, H. Zhao, A. Kennedy, and Y. Zhu, “Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations,” Compos. Sci. Technol., 70, 1199 – 1206 (2010).

    Article  Google Scholar 

  24. S. C. Zhang, W. G. Fahrenholtz, G. E. Hilmas, and E. J. Yadlowsky, “Pressureless sintering of carbon nanotube–Al2O3 composites,” J. Eur. Ceram. Soc., 30, 1373 – 1380 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by High-Tech Research and Development Project Program of China (863) 2013AA051402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Feng.

Additional information

Translated from Novye Ogneupory, No. 3, pp. 153 – 158, March, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Feng, Y., Wang, Y. et al. Well-Dispersed Carbon Nanotubes for Greatly Enhanced Mechanical Properties of Alumina-Based Composites. Refract Ind Ceram 58, 188–193 (2017). https://doi.org/10.1007/s11148-017-0079-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-017-0079-y

Keywords

Navigation