Skip to main content
Log in

Structure, Properties, and Applications of Graphite-Like Hexagonal Boron Nitride

  • Published:
Refractories and Industrial Ceramics Aims and scope

A review of the literature is presented, including a description of the crystal structure and morphological features of graphite-like hexagonal boron nitride, as well as the preparation of materials based on it. The mechanical and dielectric properties of pyrolytic, hot-pressed (hexagonal and turbostratic modification) and reactive sintered boron nitride are presented. The positive effect of impregnation of porous samples based on boron nitride with organoboron and organosilicon compounds, followed by pyrolysis, on the level of physicomechanical characteristics is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. L. Ci, L. Song, C. Jin, et al., “Atomic layers of hybridized boron nitride and graphene domains,” Nat. Materials, 9(5), 430 – 435 (2010).

    Article  CAS  Google Scholar 

  2. Y. Meng, H. Mao, P. Eng, et al., “BN under compression: the formation of sp3 bond,” Nat. Mater., 3(2), 111 – 114 (2004).

    Article  CAS  Google Scholar 

  3. X. Li, X. Hao, M. Zhao, et al., “Exfoliation of hexagonal boron nitride by molten hydroxides,” Adv. Mater., 25(15), 2200 – 2204 (2013).

    Article  CAS  Google Scholar 

  4. L. Song, L. Ci, H. Lu, et al., “Large scale growth and characterization of atomic hexagonal boron nitride layers,” Nano Lett., 10(8), 3209 – 3215 (2010).

    Article  CAS  Google Scholar 

  5. S. Dai, Z. Fei, Q. Ma, et al., “Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride,” Science, 343(6175), 1125 – 1129 (2014).

    Article  CAS  Google Scholar 

  6. G. Wen, G. L. Wu, T. Q. Lei, et al., “Coenhanced SiO2 – BN ceramics for high-temperature dielectric applications,” J. Eur. Ceram. Soc., 20(12), 1923 – 1928 (2000).

    Article  CAS  Google Scholar 

  7. R. Haubner, M. Wilhelm, R. Weissenbacher, and B. Lux, “Boron nitrides – properties, synthesis and applications,” High Performance Non-Oxide Ceramics II, Springer, Berlin. Heidelberg (2002) p. 1 – 45.

  8. C. Klöpfer, “Boron nitride – solutions for aluminum extrusion,” Aluminium-Düsseldorf Then Isernhagen-Aluminium Verlag GMBH, 82(5), 389 – 395 (2006).

    Google Scholar 

  9. J. Eichler and C. Lesniak, “Boron nitride (BN) and BN composites for high-temperature applications,” J. Eur. Ceram. Soc., 28(5), 1105 – 1109 (2008).

    Article  CAS  Google Scholar 

  10. J. Eichler, K. Uibel, and C. Lesniak, “Boron nitride (BN) and boron nitride composites for applications under extreme conditions,” Adv. Sci. Technol. ¯ Trans. Tech. Publications, 65, 61 – 69 (2010).

  11. D. Jia, L. Zhou, Z. Yang, et al., “Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites,” J. Am. Ceram. Soc., 94(10), 3552 – 3560 (2011).

    Article  CAS  Google Scholar 

  12. Y. Zhou, X. Duan, D. Jia, et al., “Mechanical properties and plasma erosion resistance of ZrO2p (3Y)/BN–SiO2 ceramic composites under different sintering temperature,” IOP Conference Series: Materials Science and Engineering, IOP Publishing, 18(20), 202 – 203 (2011).

    Article  Google Scholar 

  13. X. Zhang, J. Chen, J. Zhang, et al., “High-temperature mechanical and thermal properties of h-BN/30 vol.% Y2SiO5 composite,” Ceram. Int., 41(9), 10891 – 10896 (2015).

    Article  CAS  Google Scholar 

  14. X. Zhang, J. Chen, J. Zhang, et al., “Microstructure and mechanical properties of h-BN/Y2SiO5 composites,” Ceram. Int., 41(1), 1279 – 1283 (2015).

    Article  CAS  Google Scholar 

  15. D. Cai, Z. Yang, X. Duan, et al., “A novel BN – MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing,” Mater. Sci. Eng. A, 633, 194 – 199 (2015).

    Article  CAS  Google Scholar 

  16. D. Cai, Zh. Yang, X. Duan, et al., “Inhibiting crystallization mechanism of h-BN on _-cordierite in BN-MAS composites,” J. Eur. Ceram. Soc., 36(3), 905 – 909 (2016).

    Article  CAS  Google Scholar 

  17. B. Chen, Q. Bi, J. Yang, et al., “Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites,” Tribol. Int., 41(12), 1145 – 1152 (2008).

    Article  CAS  Google Scholar 

  18. V. V. Sagalovich, A. G. Chuchkalov, V. I. Kardashov, and M. E. Tarasov, Physicochemical Fundamentals of Pyrolytic Boron Nitride Production [in Russian], National Science Centre “Kharkiv Institute of Physics and Technology”, Kharkov (1991) 284 p.

  19. A. S. Golubev, A. V. Kurdyumov, and A. N. Pilyankevich, Boron Nitride. Structure, Properties, Production [in Russian], Naukova Dumka, Kiev (1987) 197 p.

  20. A. V. Kurdyumov, V. G. Malogolovets, N. V. Novikov, et al., Polymorphic Modifications of Carbon and Boron Nitride [in Russian], Metallurgiya, Moscow (1994) 320 p.

  21. A. V. Kurdyumov, T. S. Bartnitskaya, V. I. Lyashenko, et al., “Patterns of structure formation during carbide synthesis of nanocrystalline graphite-like boron nitride,” Poroshkovaya Metallurgiya, No. 11/12, 88 – 97 (2005).

  22. X. Duan, D. Jia, Z. Wu, et al., “Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics,” Scripta Mater., 68(2), 104 – 107 (2013).

    Article  CAS  Google Scholar 

  23. X. Duan, M. Wang, D. Jia, et al., “Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics,” Mater. Sci. Eng. A, 607, 38 – 43 (2014).

    Article  CAS  Google Scholar 

  24. J. X. Xue, J. X. Liu, B. H. Xie, and G. J. Zhang, “Pressure-induced preferential grain growth, texture development and anisotropic properties of hot-pressed hexagonal boron nitride ceramics,” Scripta Mater., 65(11), 966 – 969 (2011).

    Article  CAS  Google Scholar 

  25. B. Ertug, T. Boyraz, and O. Addemir, “Microstructural aspects of the hot-pressed hexagonal boron nitride ceramics with limited content of boron oxide,” Mater. Sci. Forum. — Trans. Tech Publications, 554, 197 – 200 (2007)

    Article  CAS  Google Scholar 

  26. I. A. Petrusha, “Phase and structural transformations of pyrolytic materials of boron nitride at high pressures” [in Russian], dissertation, V. Bakul Institute for Superhard Materials of the NAS of Ukraine (2002) 350 p.

  27. Pat. 6306358 USA, “Crystalline turbostratic boron nitride powder and method for producing same,” O. Yamamoto (2001) 7 p.

  28. X.W. Zhang, H. G. Boyen, H. Yin, et al., “Microstructure of the intermediate turbostratic boron nitride layer,” Diamond Relat. Mater., 14(9), 1474 – 1481 (2005).

    Article  CAS  Google Scholar 

  29. A. V. Kurdyumov and V. F. Britun, “Turbostratic boron nitride: structural features and phase transformations,” Nanostrukturnoe Materialovedenie, No. 1, 3 – 8 (2010).

    Google Scholar 

  30. G. S. Oleinik, I. A. Petrusha, A. V. Kotko, and M. V. Nikishina, “Features of structural-phase transformations of turbostratic BN at high pressures and temperatures,” Electronnaya Mikroskopiya i Prochnost’ Materialov. Ser.: Fizicheskoe Materialovedenie, Struktura i Svoistva Materialov (Electron Microscopy and Strength of Materials. Series: Physical Materials Science, Structure and Properties of Materials), No. 21, 102 – 109 (2015).

  31. D. D. Nesmelov and S. N. Perevislov, “Reaction sintered materials based on boron carbide and silicon carbide,” Glass Ceram., 71(9/10), 313 – 319 (2015).

    Article  CAS  Google Scholar 

  32. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman “Effect of Si additions on the microstructure and mechanical properties of hot-pressed B4C,” 53(4), 376 – 380 (2017).

  33. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “High density boron carbide ceramics,” Refract. Ind. Ceram., 59(1), 32 – 36 (2018).

    Article  CAS  Google Scholar 

  34. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, “Phase composition and microstructure of reaction-bonded boron-carbide materials,” Refract. Ind. Ceram., 59(2), 179 – 183 (2018).

    Article  CAS  Google Scholar 

  35. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass and Ceramics, 73(7/8), 249 – 252 (2016).

    Article  CAS  Google Scholar 

  36. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Ind. Ceram., 58(5), 577 – 582 (2018).

    Article  CAS  Google Scholar 

  37. A. S. Lysenkov, K. A. Kim, D. D. Titov, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” Journal of Physics: Conference Series, IOP Publishing, 1134(1), 012 – 036 (2018).

    Google Scholar 

  38. O. A. Lukianova, A. N. Khmara, S. N. Perevislov, et al., “Electrical resistivity of silicon nitride produced by various methods,” Ceram. Int., No. 9 (2018).

  39. T. B. Wang, C. C. Jin, J. Yang, et al., “Physical and mechanical properties of hexagonal boron nitride ceramic fabricated by pressure less sintering without additive,” Adv. Appl. Ceram., 114(5), 273 – 276 (2015).

    Article  CAS  Google Scholar 

  40. C. Steinborn, M. Herrmann, U. Keitel, et al., “Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics,” J. Eur. Ceram. Soc., 33(6), 1225 – 1235 (2013).

    Article  CAS  Google Scholar 

  41. R. V. Tarabanov and S. N. Perevislov, “Properties of materials based on boron nitride,” Ogneupory i Tekhnicheskaya Keramika, No. 1/2, 3 – 7 (2017).

  42. B. M. Mikhailov and Yu. N. Bubnov, Organoboron Compounds in Organic Synthesis [in Russian], Nauka, Moscow (1977) 515 p.

  43. V. S. Spiridonov, P. G. Mingalev, and G. V. Lisichkin, “Chemical modification of silicon oxide and hydroxylapatite with organoboron compounds,” Vestnik Moskovskogo Univesiteta (Moscow University Bulletin), 43(5), 315 – 316 (2002).

    CAS  Google Scholar 

  44. P. A. Storozhenko, G. I. Shcherbakova, A. M. Tsirlin, et al., “Aluminum and silicon organic compounds for modern nanoceramic composites,” Inzhenernyj Zhurnal “Nanotekhnika”, No. 2, 25 – 33 (2008).

  45. M. V. Pasechnik, I. N. Kulish, and G. S. Saribekov, “Assessment of the degree of crosslinking of polymers in composites for finishing special-purpose materials,” Problemy Legkoi i Tekstil’noi Promyshlennosi Ukrainy (Problems of Light and Textile Industry of Ukraine), KhNTU, Kherson, 16(1), 39 – 43 (2010).

    Google Scholar 

  46. N. I. Fainer, “From Organosilicon Precursors to Multifunctional Silicon Carbonitride,” Zh. Obshch. Khim., 82(1), 47 – 56 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Additional information

Translated from New Refractories, No. 6, pp. 35 – 40, June 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. Structure, Properties, and Applications of Graphite-Like Hexagonal Boron Nitride. Refract Ind Ceram 60, 291–295 (2019). https://doi.org/10.1007/s11148-019-00355-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-019-00355-5

Keywords

Navigation