Skip to main content
Log in

Treatment of Biogas Produced in Anaerobic Reactors for Domestic Wastewater: Odor Control and Energy/Resource Recovery

  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Anaerobic municipal wastewater treatment in developing countries has important potential applications considering their huge lack of sanitation infrastructure and their advantageous climatic conditions. At present, among the obstacles that this technology encounters, odor control and biogas utilization or disposal should be properly addressed. In fact, in most of small and medium size anaerobic municipal treatment plants, biogas is just vented, transferring pollution from water to the atmosphere, contributing to the greenhouse gas inventory. Anaerobic municipal sewage treatment should not be considered as an energy producer, unless a significant wastewater flow is treated. In these cases, more than half of the methane produced is dissolved and lost in the effluent so yield values will be between 0.08 and 0.18 N m3 CH4/kg COD removed. Diverse technologies for odor control and biogas cleaning are currently available. High pollutant concentrations may be treated with physical-chemical methods, while biological processes are used mainly for odor control to prevent negative impacts on the treatment facilities or nearby areas. In general terms, biogas treatment is accomplished by physico-chemical methods, scrubbing being extensively used for H2S and CO2 removal. However, dilution (venting) has been an extensive disposal method in some small- and medium-size anaerobic plants treating municipal wastewaters. Simple technologies, such as biofilters, should be developed in order to avoid this practice, matching with the simplicity of anaerobic wastewater treatment processes. In any case, design and specification of biogas handling system should consider safety standards. Resource recovery can be added to anaerobic sewage treatment if methane is used as electron donor for denitrification and nitrogen control purposes. This would result in a reduction of operational cost and in an additional advantage for the application of anaerobic sewage treatment. In developing countries, biogas conversion to energy may apply for the clean development mechanism (CDM) of the Kyoto Protocol. This would increase the economic feasibility of the project through the marketing of certified emission reductions (CERs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AD-NETT (2000) Anaerobic digestion of agro-industrial wastes: information networks. Technical summary on gas treatment. European Community Project FAIR-CT96-2083 (DG12-SSMI). Available at www.adnett.org

  • Allen ER & Phatak S (1993) Control of organosulfur compound emissions using biofiltration: methyl mercaptan. In: Proceedings of the 86th Air and Waste Management Association Annual Meeting and Exhibition. June 13–18, Denver, Colorado, USA

  • S Asai Y Konishi T Yabu (1990) ArticleTitleKinetics of absorption of hydrogen sulfide into aqueous ferric sulphate solutions AICHE J. 36 1331–1338 Occurrence Handle10.1002/aic.690360906 Occurrence Handle1:CAS:528:DyaK3cXlsFGitLs%3D

    Article  CAS  Google Scholar 

  • SP Bhatia (1978) Organosulfur emissions from industrial sources J.O. Nriagu (Eds) Sulfur in the Environment, Part I John Wiley & Sons Canada

    Google Scholar 

  • K Bell (1988) Heat transmission: thermal design of heat transfer equipment R Perry D Green (Eds) Perry’s Chemical Engineering Handbook EditionNumber6 McGraw Hill New York 1020–1023

    Google Scholar 

  • A Bielefeldt (2001) Activated sludge and suspended growth bioreactors C Kennes MC Veiga (Eds) Bioreactors for waste gas treatment Kluwer Academic Publishers The Netherlands 215–254

    Google Scholar 

  • Bradfer JF (2002) Safety risks related to biogas handling in a wastewater treatment plant. In: CD Proceedings of the XXVIII Interamerican Congress of Sanitary and Environmental Engineering (in Spanish). Interamerican Association of Sanitary and Environmental Engineering (AIDIS), October 27–31, Cancun, Mexico

  • P Cadenhead KL Sublette (1990) ArticleTitleOxidation of hydrogen sulfide by Thiobacilli Biotechnol. Bioeng. 2 201–203

    Google Scholar 

  • FP Cadena RW Peters (1988) ArticleTitleEvaluation of chemical oxidizers for hydrogen sulphide control J. Water Pollut. Control Fed. 60 1259–1263 Occurrence Handle1:CAS:528:DyaL1cXksl2jtb8%3D

    CAS  Google Scholar 

  • B Cardenas-Gonzalez S Ergas M Switzenbaum N Phillibert (1999) ArticleTitleEvaluation of full-scale biofilter media performance Environ. Prog. 18 205–211 Occurrence Handle1:CAS:528:DyaK1MXntlCqtbg%3D

    CAS  Google Scholar 

  • Carlson DA & Leiser CP (1966) Soil beds for the control of sewage odors. J. WPCF. May: 829–840

  • KY Chen JC Morris (1972) ArticleTitleKinetics of oxidation of aqueous sulphide by oxygen Environ. Sci. Technol. 6 529–537 Occurrence Handle10.1021/es60065a008 Occurrence Handle1:CAS:528:DyaE38XksFait7k%3D

    Article  CAS  Google Scholar 

  • Cho KS, Hirai M & Shoda M (1992) Degradation of hydrogen sulfide by Xanthomonas sp. Strain DY44 Isolated from Peat. App. Environ. Microbiol. April: 1183–1189

  • M Constant H Naveau GL Ferrero EJ Nyns (1989) Biogas End-Use in the European Community Elsevier Science Publisher England

    Google Scholar 

  • RA Corbitt (1990) Air quality control RA Corbitt (Eds) Standard Handbook of Environmental Engineering McGraw Hill New York 4100–4115

    Google Scholar 

  • DJ Cork S Ma (1982) ArticleTitleAcid–gas bioconversion favors sulfur production Biotechnology and Bioengineering Symp. 12 285–290 Occurrence Handle1:CAS:528:DyaL3sXhtFarurk%3D

    CAS  Google Scholar 

  • C Costa C Dijkema M Friedrich P García-Encina F Fernández-Polanco JM Stams (2000) ArticleTitleDenitrification with methane as electron donor in oxygen-limited bioreactors Appl. Microbiol. Biotechnol. 53 IssueID6 754–762 Occurrence Handle10.1007/s002530000337 Occurrence Handle1:CAS:528:DC%2BD3cXkvVygsr4%3D

    Article  CAS  Google Scholar 

  • TR Davies (1973) ArticleTitleIsolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrification Water Res. 7 575–579 Occurrence Handle10.1016/0043-1354(73)90056-0 Occurrence Handle1:CAS:528:DyaE3sXht1yiu74%3D

    Article  CAS  Google Scholar 

  • A Eisentraeger P Klag B Vansbotter E Heymann W Dott (2001) ArticleTitleDenitrification of groundwater whit methane as sole hydrogen donor Water Res. 35 IssueID9 2261–2267 Occurrence Handle10.1016/S0043-1354(00)00516-9 Occurrence Handle1:CAS:528:DC%2BD3MXjtV2gsL4%3D

    Article  CAS  Google Scholar 

  • S Ergas (2001) Membrane bioreactors C Kennes MC Veiga (Eds) Bioreactors for Waste Gas Treatment Kluwer Academic Publishers Dordrecht, The Netherlands 163–177

    Google Scholar 

  • Fernández Polanco F, Martínez B, Olmedo F & García del Valle J (1996) Removal of H2S using a chemical scrubber and biologica l oxidation. In: Proceedings IV Workshop and Seminar on Anaerobic Wastewater Treatment in Latin America (in Spanish), November 19–22, Bucaramanga, Colombia

  • E Houbron M Torrijos B Capdeville (1999) ArticleTitleAn alternative use of biogas applied at the water denitrification Water Sci. Technol. 40 IssueID8 115–122 Occurrence Handle10.1016/S0273-1223(99)00616-2 Occurrence Handle1:CAS:528:DyaK1MXotVOrsL0%3D

    Article  CAS  Google Scholar 

  • S Islas-Lima F Thalasso J Gómez-Hernández (2004) ArticleTitleEvidence of anoxic methane oxidation coupled to denitrification Water Res. 38 13–16 Occurrence Handle10.1016/j.watres.2003.08.024 Occurrence Handle1:CAS:528:DC%2BD3sXovFGjs7g%3D

    Article  CAS  Google Scholar 

  • C Kennes C Veiga O Prado (2001) Non biological treatment technologies C Kennes MC Veiga (Eds) Bioreactors for Waste Gas Treatment Kluwer Academic Publishers Dordrecht, The Netherlands 17–46

    Google Scholar 

  • Lang ME & Jager RA (1992) Odor control for municipal sludge composting. BioCycle, August: 76–85

  • Lettinga G, Hulshoff Pol LW, Zeeman G, Field J, van Lier JB, van Bunsen JCL, Janssen AJH & Lens P (1997) Anaerobic treatment in sustainable environmental production concepts. In: Proceedings of the 8th Conference on Anaerobic Digestion, Japan. 1:32–39

  • W Hugler C Acosta S Revah (1999) ArticleTitleBiological removal of carbon disulfide from waste air streams Environ. Prog. (AICHE) 3 173–177

    Google Scholar 

  • LA Mansfield PE Melnyk GC Richardson (1992) ArticleTitleSelection and full scale use of a chelated iron absorbent for odor control Water Environ. Res. 64 120–127 Occurrence Handle1:CAS:528:DyaK38XisVSqtrs%3D

    CAS  Google Scholar 

  • Martínez CP & Zamorano JP (1996) Practical experience on anaerobic treatment and odor control in a yeast factory. In: Proceedings IV Workshop and Seminar on Anaerobic Wastewater Treatment in Latin America (in Spanish), November 19–22, Bucaramanga, Colombia

  • I Mason (1977) ArticleTitleMethane as carbon source in biological denitrification J WPCF 49 855–857 Occurrence Handle1:CAS:528:DyaE2sXkvFShsr4%3D

    CAS  Google Scholar 

  • Merck (1996) The Merck Index EditionNumber12 Merck & Co. Inc. USA

    Google Scholar 

  • InstitutionalAuthorNameMetcalf & Eddy Inc. (2003) Wastewater Engineering: Treatment and Reuse EditionNumber4 McGraw Hill New York

    Google Scholar 

  • JM Morgan-Sagastume B Jiménez A Noyola (1994) ArticleTitleAnaerobic-anoxic-aerobic process with recycling and separated biomass for organic carbon and nitrogen removal from wastewater Environ. Technol. 15 233–243 Occurrence Handle1:CAS:528:DyaK2cXksVWrtLo%3D

    CAS  Google Scholar 

  • JM Morgan-Sagastume S Ergas A Noyola (2003a) ArticleTitleChanges in physical structure of a compost biofilter treating H2S J. Air Waste Manag. Assoc. 53 1011–01021 Occurrence Handle1:CAS:528:DC%2BD3sXnt1Srsbk%3D

    CAS  Google Scholar 

  • JM Morgan-Sagastume S Revah A Noyola (2003b) ArticleTitlePressure drop and gas distribution in compost based biofilters: media mixing and composition effects Environ. Technol. 24 797–807 Occurrence Handle1:CAS:528:DC%2BD3sXlvFyrsb4%3D

    CAS  Google Scholar 

  • N Mukhopadhyay EC Moretti (1993) Current and Potential Future Industrial Practices for Reducing and Controlling Volatile Organic Compounds Center for Waste Reduction Technologies, American Institute of Chemical Engineers New York

    Google Scholar 

  • Noyola A (2004) Anaerobic digestion applied to municipal wastewater treatment: facts and limitations of an adapted technology for Latin America. In: CD Proceedings 77th Annual Technical Exhibition and Conference WEFTEC, October 2–6, Water Environmental Federation, New Orleans, USA

  • A Noyola B Capdeville H Roques (1988) ArticleTitleAnaerobic treatment of domestic sewage with a rotating-stationary fixed film reactor Water Res. 12 1585–1592

    Google Scholar 

  • Nyns EJ & Thomas S (1998) Biogas from waste and wastewater treatment. Renewable Energies Series, Belgium Ver. 2. Lior CD Collection

  • C Ongcharit YT Shah JL Sublette (1990) ArticleTitleNovel Immobilized Cell Reactor for Microbial Oxidation of H2S Chem. Eng. Sci. 45 2383–2389 Occurrence Handle1:CAS:528:DyaK3cXmtFSisrk%3D

    CAS  Google Scholar 

  • TW Planker (1998) Masking and odor neutralization HJ Rafson (Eds) Odor and VOC control Handbook McGraw Hill New York 818–824

    Google Scholar 

  • R Pomeroy (1982) ArticleTitleBiological treatment of odorous air J. WPCF 54 1541–1545

    Google Scholar 

  • RS Qasim (1999) Wastewater Treatment Plants: Planning, Design and Operation Technomic Publishing Co Lancaster Pa, USA

    Google Scholar 

  • MB Rands DE Cooper CP Woo GC Fletcher FK Rolfe (1981) ArticleTitleCompost filters for H2S removal from anaerobic digestion and rendering exhausts J. WPCF 53 185–189 Occurrence Handle1:CAS:528:DyaL3MXitFems7g%3D

    CAS  Google Scholar 

  • S Revah A Hinojosa V Morales (1995) Air biodesulphurisation in process plants, in Bioremediation OECD Documents Paris, France 569–576

    Google Scholar 

  • S Revah JM Morgan-Sagastume (2005) Methods for odor and VOC control Z Shareefdeen A Singh (Eds) Biotechnology for Odor and Air Pollution Control Springer-Verlag Heidelberg, Germany 29–64

    Google Scholar 

  • S Revah A Noyola (1996) Biotechnology markets in Mexico and opportunities for university and industry collaboration (in Spanish) E Galindo (Eds) Frontiers in Biotechnology and Bioengineering Mexican Society of Biotechnology and Bioengineering Mexico 121–136

    Google Scholar 

  • G Rhee WG Fuhs (1978) ArticleTitleWastewater denitrification with one carbon compounds as energy source J WPCF 50 2111–2119 Occurrence Handle1:CAS:528:DyaE1cXlvVGrsb0%3D

    CAS  Google Scholar 

  • PH Rudolf von Rohr P Ruediger (2001) Rotating biological contactors C Kennes MC Veiga (Eds) Bioreactors for Waste Gas Treatment Kluwer Academic Publishers Dordrecht, The Netherlands 201–214

    Google Scholar 

  • SG Santos MBA Varesche M Zaiat E Foresti (2004) ArticleTitleComparison of methanol, ethanol and methane as electron donors for dentrification Environ. Eng. Sci. 21 313–320

    Google Scholar 

  • H Satoh J Yoshizawa S Kamentani (1988) ArticleTitleBacteria help desulfurize gas Hydrocarb. Process. Int. Ed. 76 76D–76F

    Google Scholar 

  • E Särner (1990) ArticleTitleRemoval of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter Water Sci. Tech. 22 395–404

    Google Scholar 

  • E Smet H Langenhove ParticleVan (1998) ArticleTitleAbatement of volatile organic sulfur compounds in odorous emissions from the bio-industry Biodegradation 9 273–284 Occurrence Handle10.1023/A:1008281609966 Occurrence Handle1:CAS:528:DyaK1MXitFCmtLw%3D

    Article  CAS  Google Scholar 

  • FW Sollo HF Müller TE Larson (1976) ArticleTitleDenitrification of wastewater effluents with methane J. WPCF 48 IssueID7 1840–1842 Occurrence Handle1:CAS:528:DyaE2sXitFeqtA%3D%3D

    CAS  Google Scholar 

  • Sontah H & Shiratori T (1990) Method of Treating H2S Containing Gases. US Patent 4931262

  • KL Sublette ND Sylvester (1987) ArticleTitleOxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs Biotechnol. Bioeng. 29 759–761 Occurrence Handle1:CAS:528:DyaL2sXhslalu7c%3D

    CAS  Google Scholar 

  • AF Thalasso A Vallecillo P García-Encina F Fernández-Polanco (1995) ArticleTitleThe use methane as a sole carbon source for water denitrification Water Res. 31 55–60

    Google Scholar 

  • Thomson RB (1980) Catalytic Removal of Hydrogen Sulfide from Gases. US Patent No 4189462

  • Torres M, Revah S, Hinojosa A, Paez F & Morales V (1993) Process for the Elimination of Sulphur Compounds Present in a Gas Mixture, US Patent 5,236,677

  • UNEP (1999) Understanding climate change: a beginners guide to the UN Framework Convention and its Kyoto Protocol. United Nations Environmental Program, Climatic Change Secretariat (35 pp), Geneva

  • UNEP (2005) Finance for carbon solutions, CEO Briefing, United Nations Environmental Program Finance Initiative (8 pp), Geneva

  • JW Groenestijn ParticleVan PG Hesselink (1993) ArticleTitleBiotechniques for air pollution control Biodegradation 4 283–301

    Google Scholar 

  • JW Groenestijn ParticleVan (2001a) Bioscrubbers C Kennes MC Veiga (Eds) Bioreactors for Waste Gas Treatment Kluwer Academic Publishers Dordrecht, The Netherlands 133–162

    Google Scholar 

  • JW Groenestijn ParticleVan (2001b) Combined advanced oxidation and biodegradation C Kennes MC Veiga (Eds) Bioreactors for waste gas treatment Kluwer Academic Publishers Dordrecht, The Netherlands 179–200

    Google Scholar 

  • S Villaverde (2004) ArticleTitleRecent developments on biological nutrient removal processes for wastewater treatment Rev. Environ. Sci. Bio/Technol. 3 171–183 Occurrence Handle1:CAS:528:DC%2BD2MXit1Ort7k%3D

    CAS  Google Scholar 

  • RE Waldrop (1998) Condensation HJ Rafson (Eds) Odor and VOC Control Handbook McGraw Hill New York 825–830

    Google Scholar 

  • TS Webster JS Devinny EM Torres SS Barrai (1996) ArticleTitleBiofiltration of odors, toxics and volatile organic compounds from publicly owned treatment works Environ. Prog. 15 141–147 Occurrence Handle1:CAS:528:DyaK28Xls1Giurk%3D

    CAS  Google Scholar 

  • WEF (1999) Wastewater Treatment. 3 Water Environment Federation, USA Manual of Practice 8

  • M Werner R Kayser (1991) ArticleTitleDenitrification with biogas as external carbon source Water Sci. Technol. 23 IssueID4–6 701–708 Occurrence Handle1:CAS:528:DyaK3MXitFemsLw%3D

    CAS  Google Scholar 

  • JR West (1983) Sulfur Recovery M Grayson D Eckroth (Eds) Encyclopedia of Chemical Technology Kirk Othmer 22 John Wiley & Sons New York 267–297

    Google Scholar 

  • WPCF (1987) Anaerobic Sludge Digestion. 2 Water Pollution Control Federation, USA Manual of Practice No. 16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalberto Noyola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noyola, A., Morgan-Sagastume, J.M. & López-Hernández, J.E. Treatment of Biogas Produced in Anaerobic Reactors for Domestic Wastewater: Odor Control and Energy/Resource Recovery. Rev Environ Sci Biotechnol 5, 93–114 (2006). https://doi.org/10.1007/s11157-005-2754-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-005-2754-6

Keywords

Navigation