Skip to main content

Advertisement

Log in

Access to glacial and subglacial environments in the Solar System by melting probe technology

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

A key aspect for understanding the biological and biochemical environment of subglacial waters, on Earth or other planets and moons in the Solar system, is the analysis of material embedded in or underneath icy layers on the surface. In particular the Antarctic lakes (most prominently Lake Vostok) but also the icy crust of Jupiter’s moon Europa or the polar caps of Mars require such investigation. One possible technique to penetrate thick ice layers with small and reliable probes is by melting, which does not require the heavy, complex and expensive equipment of a drilling rig. While melting probes have successfully been used for terrestrial applications e.g. in Antarctic ice, their performance in vacuum is different and theory needs confirmation by tests. Thus, a vacuum chamber has been used to perform a series of melting tests in cold (liquid nitrogen cooled) water ice samples. The feasibility of the method was demonstrated and the energy demand for a space mission could be estimated. Due to the high energy demand in case of extraterrestrial application (e.g. Europa or polar caps of Mars), only heating with radioactive isotopes seems feasible for reaching greater depths. The necessary power is driven by the desired penetration velocity (approximately linearly) and the dimensions of the probe (proportional to the cross section). In comparison to traditional drilling techniques the application of a melting probe for exploration of Antarctic lakes offers the advantage that biological contamination is minimized, since the Probe can be sterilized and the melting channel freezes immediately after the probe’s passage, inhibiting exchange with the surface layers and the atmosphere. In order to understand the physical and chemical nature of the ice layers, as well as for analysing the underlying water body, a melting probe needs to be equipped with a suite of scientific instruments that are capable of e.g. determining the chemical and isotopic composition of the embedded or dissolved materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aamot HWC (1967a) Pendulum steering for thermal probes in glaciers. J Glaciol 6:935–939

    Google Scholar 

  • Aamot HWC (1967b) The Philberth probe for investigating polar ice caps CRREL Special Report 119. Cold Regions Research & Engineering Laboratory, Hanover, New Hamphire

    Google Scholar 

  • Aamot HWC (1967c) Heat transfer and performance of a thermal probe for glaciers CRREL Special Report 194. Cold Regions Research & Engineering Laboratory, Hanover, New Hamphire

    Google Scholar 

  • Aamot HWC (1968) Instrumented probes for deep glacial investigations. CRREL Special Report 210, Cold Regions Research & Engineering Laboratory, Hanover, New Hamphire, 1968. Same as Aamot, HWC, (1970) Instrumented Probes for Deep Glacial Investigations. J Glac 7 (50):321–328

    Google Scholar 

  • Aamot HWC (1970a) Self-contained thermal probes for remote measurements within an ice sheet. In: International Symposium on Antarctic Glaciological Exploration (ISAGE), Hanover, N. H., September 3–7, 1968; International Association of Scientific Hydrology Publication 86:63–68

  • Aamot HWC (1970b) Development of a Vertically Stabilized Thermal Probe for Studies in and Below Ice Sheets, J Eng Industry 92B(2):263–268, Transactions of the ASME, paper no. 69-WA/UnT-3

  • Anderson J, Schubert G, Jacobsen R, Lau E, Moore W, Sjogren W (1998) Europa’s differentiated internal structure: interferences from four Galileo encounters. Science 281:2019–2022

    Article  CAS  Google Scholar 

  • AWI/Jokat W, Oerter H (eds) (1997) Die Expedition ANTARKTIS-XII mit FS “Polarstern 1995, Bericht vom Fahrtabschnitt ANT-XII/3”, Berichte zur Polarforschung, Alfred-Wegener-Institut für Polar- und Meeresforschung, 27568 Bremerhaven, Germany, 219:106–111

  • Ballou EV, Wood PC, Wydeven T, Lehwalt ME, Mack R (1978) Chemical interpretation of viking lander 1 life detection experiment. Nature 271:644–645

    Article  CAS  Google Scholar 

  • Bibring JP, Langevin Y, Poulet F, Gendrin A, Gondet B, Berthé M, Soufflot A, Drossart P, Combes M, Bellucci G, Moroz V, Mangold N, Schmitt B, OMEGA Team (2004) Perennial water ice identified in the south polar cap of Mars. Nature 428:627–630

    Article  CAS  Google Scholar 

  • Biele J, Ulamec S, Garry J, Sheridan S, Morse AD, Barber S, Wright I, Tüg H, Mock T (2002) Melting Probes at Lake Vostok and Europa. In: Proceedings of the First European Workshop on Exo/Astrobiology. ESA SP 518:305–308

    Google Scholar 

  • Cardell G, Hecht MH, Carsey FD, Engelhardt H, Fisher D, Terrell C, Thompson J (2004) The Subsurface Ice Probe (SIPR): A Low-Power Thermal Probe for the Martian Polar Layered Deposits, 35th Lunar and Planetary Science Conference, March 15–19, 2004, League City, Texas, abstract no. 2041

  • Carsey FD, Chen G-S, Cutts J, French L, Kern R, Lane AL, Stolorz P, Zimmermann W (1999) Exploring Europa’s Ocean: a challenge for marine technology of this century. MTS Journal 33(4):5–12

    Google Scholar 

  • Cassen P, Peale SJ, Reynolds RT (1980) Tidal dissipation in Europa: A correction. Geophys Res Lett 7:987–988

    Google Scholar 

  • Cassen P, Reynolds RT, Peale SJ (1979) Is there liquid water on Europa?. Geophys Res Lett 6:731–734

    Google Scholar 

  • Clifford SM et al. (2001) The state and future of mars polar science and exploration. Icarus 144:210–242

    Article  CAS  Google Scholar 

  • Clow GD, Koci B (2002) A Fast Mechanical Access Drill for Polar Glaciology, Paleoclimatology, Geology, Tectonics and Biology. Mem Natl Inst Polar Res Spec Issue 56:1–00

    Google Scholar 

  • DiPippo S, Mugnuolo R, Vielmo P, Prendin W (1999) The exploitation of Europa ice and water basins: an assessment on required technological developments, on system design approaches and on relevant expected benefits to space- and earth-based activities. Planet Space Sci 47:921–933

    Article  Google Scholar 

  • Engelhardt H, Humphrey N, Kamb B, Fahnestock M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science 248:57–59

    Article  Google Scholar 

  • Engelhardt H, Kamb B, Bolsey R (2000) A hot-water ice-coring drill. J Glaciol 46(153):141–145

    Article  Google Scholar 

  • Engelhardt M (2006) Investigation of decontamination procedures for application on melting probes according to present Planetary Protection rules, Master of Science Thesis, Aachen University of Applied Sciences, Jülich campus, Department of Applied Sciences and Technology

  • Fishbaugh KE, Head JW (2001) Comparison of the North and South polar caps of mars: new observations from MOLA data and discussion of some outstanding questions. Icarus 154:145–161

    Article  CAS  Google Scholar 

  • Gantt LL, Oba EM, Leising L, Stagg T, Stanley M, Walker E, Walker R (1998) Coiled tube drilling on the Alaskan North Slope. Oilfield Rev 10(2):20–35

    CAS  Google Scholar 

  • Giles J (2004) Russian bid to drill Antarctic lake gets chilly response. Nature 430:494

    Article  CAS  Google Scholar 

  • Godwin R (Editor) (2000) Mars – The NASA Mission Reports. Apogee Books, Burlington Ont., Canada

    Google Scholar 

  • Greenberg R, Hoppa GV, Tufts BR, Geissler P, Riley J, Kadel S (1999) Chaos on Europa. Icarus 141:263–268

    Article  Google Scholar 

  • Greenberg R, Geissler P (2002) Europa’s dynamic icy crust: An invited review. Meteoritics and Planetary Sci 37:1685–1711

    Article  CAS  Google Scholar 

  • Greenberg R, Tufts BR, Geissler P, Hoppa GV (2001) Europa’s Crust and Ocean: How Tides create a potentially habitable physical setting. In: Astrobiology, pp 111–124, Springer Verlag Berlin/Heidelberg/New York

  • Greenberg R(2005) Europa The Ocean Moon. Springer Verlag, Berlin, New York

    Google Scholar 

  • Gromov VV, Misckevich AV, Yudkin EN, Kochan H, Coste P, Re E (1997) The Mobile Penetrometer, a “Mole” for Sub-Surface Soil Investigation. 7th European Space Mechanisms and Tribology Symposium, ESA SP-410. pp 151–156

  • Harland D (2000) Jupiter Odyssey. Springer Praxis, Berlin and New York

    Google Scholar 

  • Hansen BL, Kersten L (1984) An In-situ Sampling Thermal Probe. In: Holdsworth G et al. (eds) Ice Drilling Technology. USA CRREL Special Report 84–34

  • Irvine WM, Pollack JB (1968) Infrared optical properties of water and ice spheres. Icarus 8:324–360

    Article  CAS  Google Scholar 

  • Kasser H (1960) Ein leichter thermischer Eisbohrer als Hilfgerät zur Installation von Ablationsstangen auf Gletschern. Geofisica Pura e Applicata 45(1):97–114

    Article  Google Scholar 

  • Kelty JR (1995) An in situ sampling thermal probe for studying global ice sheets. Ph.D. thesis, University of Nebraska

  • Khurana KK, Kivelson MG, Stevenson DJ, Schubert G, Russell CT, Walker RJ, Polansky C (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780

    Article  CAS  Google Scholar 

  • Kömle NI, Kargl G, Steller M (2002) Melting probes as a means to explore planetary glaciers and ice caps. In: Proceedings of the First European Workshop on Exo-Astrobiology, ESA SP-518: 305–308

  • Kömle NI, Treffer M, Kargl G, Kaufmann E, Steller M (2004) Development of Melting Probes for Exploring Ice Sheets and Permafrost Layers, presented at the 6th International Symposium on Permafrost Engineering, Lanzhou, China, 5–7 September 2004

  • Kuiper G (1957) Infrared observations of planets and satellites. Astronomical Journal 62:245

    Article  Google Scholar 

  • Lebreton JP et al (2005) An overview of the descent and landing of the Huygens probe on Titan. Nature 438:758–764

    Article  CAS  Google Scholar 

  • Lucchitta BK, Soderblom LA (1982) The Geology of Europa. In: Morrison D (ed) The Satellites of Jupiter. University of Arizona Press, Tucson, pp. 521–555

    Google Scholar 

  • Maurer WilliamC (1968) Novel drilling techniques. Pergamon, Oxford

    Google Scholar 

  • Mellor M, Introduction to drilling technology, In: ESA SP-302, Physics and Mechanics of Cometary Materials, Paris 1989

  • Morabito LA, Synnott SP, Kupferman PN, Collins SA (1979) Discovery of currently active extraterrestrial volcanism. Science 204:972

    Article  Google Scholar 

  • Murray JB, Balme MR, Muller JP, Kim JR, Morley J, Neukum G, HRSC Co-Investigator Team (2006) Preliminary Observations on New Images of the Elysium Frozen Sea Deposits from HRSC Mars Express, 37th Annual Lunar and Planetary Science Conference, abstract no. 2293

  • Nadis S (1999) Moves are afoot to probe the lake trapped beneath Antarctic ice. Nature 401:203

    Article  CAS  Google Scholar 

  • NASA/JPL URL: http://www.galileo.jpl.nasa.gov/

  • National Academy of Sciences (2000) Preventing the forward contamination of Europa, Report; Task Group on the Forward Contamination of Europa, Space Studies Board, ISBN NI000231

  • O’Brian DP, Geissler P, Greenberg R (2000) Tidal heat in Europa. Ice thickness and the plausibility of melt through. Bull Am Astron Soc 32:1066

    Google Scholar 

  • Ojakangas GW, Stevenson DJ (1989) Thermal state of an ice shell on Europa. Icarus 81:220–241

    Article  CAS  Google Scholar 

  • Owen T (2005) Planetary science: Huygens rediscovers Titan. Nature 438:756–757

    Article  CAS  Google Scholar 

  • Paige DA, September (1992) The Mars Polar Pathfinder/Proposal for a Discovery Mission. Discovery Program Workshop, Concept #83

  • Pappalardo RT, Head JW, Greeley R, Sullivan RJ, Pilcher C, Schuberts G, Moore WB, Carr MH, Moore JM, Belton MJ, Goldsby DL (1998) Geological evidence for solid state convection in Europa’s ice shell. Nature 391:365–368

    Article  CAS  Google Scholar 

  • Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203:892–894

    Article  Google Scholar 

  • Philbert K (1962) Une methode pour mesurer les temperatures a l’interieur d’un inlandsis. Comptes Rendus Hebdomadaires des Seances de l’ Academie des Sciences, Paris, Tom 254(22):3881–3883

    Google Scholar 

  • Pilcher C, Ridgeway S, McCord T (1972) Galilean satellites: Identification of water frost. Science 178:1087–1089

    Article  Google Scholar 

  • Priscu JC, Christner BC (2004) Earth’s icy biosphere. In: Bull A (eds) Microbial diversity and bioprospecting Chap 13. ASM Press, Washington, DC, pp 130–145

    Google Scholar 

  • Randolph RO, Race MS, McKay CP (1997) Reconsidering the theological and ethical implications of extraterrestrial life. CTNS Bull 17(3):1–8

    Google Scholar 

  • Richter L, Coste P, Gromov VV, Kochan H, Pinna S, Richter HE (2001) Development of the “planetary underground tool” subsurface soil sampler for the mars express “Beagle 2” lander. Adv Space Res 28(8):1225–1230

    Article  Google Scholar 

  • Richter L, Coste P, Gromov VV, Grzesik A (2004) The mole with sampling mechanism (MSM) – Technology development and payload of beagle 2 mars lander. Proceedings, 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA 2004), Noordwijk, The Netherlands, November 2–4

  • Reynolds RT, Squyres SW, Colburn DS, McKay CP (1983) On the habitability of Europa. Icarus 56:246–254

    Article  Google Scholar 

  • Ross M, Schubert G (1987) Tidal heating in an internal ocean model of Europa. Nature 325:133–144

    Article  Google Scholar 

  • Rummel JD (2001) Planetary exploration in the time of astrobiology: protecting against biological contamination. PNAS 98(5):2128–2131

    Article  CAS  Google Scholar 

  • Rummel JD, Stabekis PD, DeVicenzi DL, Barengoltz JB (2002) COSPAR’s planetary protection policy: a consolidated draft. Adv Space Res 30:1567–1571

    Article  Google Scholar 

  • Sas-Jaworsky A, Bell S (1996) Innovative applications stimulate coiled tubing development. World Oil 217(6):61–69

    Google Scholar 

  • Shreve RL (1962) Theory of performance of isothermal solid-nose hot-points boring in temperate ice. J Glaciol 4(32):151–160

    Google Scholar 

  • Siegert MJ (2000) Antarctic subglacial lakes. Earth Sci Rev 50:29–50

    Article  Google Scholar 

  • Siegert MJ, Ellis-Evans J, Tranter M, Mayer C, Petit JP, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609

    Article  CAS  Google Scholar 

  • Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarctic Sci 17:453–460

    Article  Google Scholar 

  • Simonsen LC, Nealy JE (1993) Mars surface radiation exposure for solar maximum conditions and 1989 Solar proton events, NASA Technical Paper 3300

  • Spohn T, Schubert G (2003) Oceans in the Galilean Satellites of Jupiter?. Icarus 161:456–467

    Article  CAS  Google Scholar 

  • Squyres SW, Reynolds RT, Cassen PM, Peale SJ (1983) Liquid water and active resurfacing on Europa. Nature 301:225–226

    Article  CAS  Google Scholar 

  • Treffer M, Kömle NI, Kargl G, Kaufmann E, Ulamec S, Biele J, Ivanov A, Funke O (2006) Preliminary studies concerning subsurface probes for exploration of icy planetary bodies. Accepted by Planetary and Space Science

  • Tüg H (2003) Rechnergesteuerte Schmelzsonde zur Ermittlung unterschiedlicher Messparameter im Eisbereich, Patentschrift DE 101 64 648 C 1, Deutsches Patentamt, 6.2.2003

  • Ulamec S, Biele J, Drescher J and Ivanov A (2005) A Melting Probe with applications on Mars, Europa and Antarctica; 56th International Astronautical Congress, IAC-A1.7.08, Fukuoka/Japan

  • Xie H, Zhu M, Guan H, Smith RK (2006) Isolated Water Ice in an Unnamed Crater Away From the Residual North Polar Cap of Mars: the Only One?, 37nd Annual Lunar and Planetary Science Conference, abstract no. 1764

  • Zarnecki JC et al (2005) A soft solid surface on Titan as revealed by the Huygens Surface Science Package. Nature 438:792–795

    Article  CAS  Google Scholar 

  • Zimmerman W, Bonitz R, Feldman J (2001) Cryobot: an ice penetrating robotic vehicle for Mars and Europa. 2001 IEEE Aerospace Conference, Big Sky, MT, 311–323

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Ulamec.

Appendices

Appendix: Thermophysical properties of ices

1.1 Overview

Property

Symbol, Unit

H2O

CO2

CO

CH4

Molar mass

M, g/mol

18.01526 8

44.0098 ±  0.0016

28.01

16.043

Triple point temperature

Tt,K

273.16 (exact)

216.592 ±  0.001 (ITS-90 secondary ref. point)

68.05 ± 0.05

90.694(1) (ITS-90 secondary ref. point)

68.13 ± 0.05 [CC]

Triple point pressure

Pt, Pa

611.655

(0.517950 ±  0.00010)E6

0.01537(3)

1.169(6) E4

Critical point temperature

Tc, K

647.096

304.128 ±  0.015

132.9

190.6

134.45 ± 0.4

Critical point pressure

Pc, Pa

2.2064 E6

(7.3773 ±  0.0030) E6

(3.499 ± 0.03) E6

4.592 E6

Critical point density

ρc, kg/m3

322

467.6 ± 0.6

301

162.0(2)

Normal melting point

Tm, K

273.1525

(Triple point)

68.05

90.7

68.08

Normal boiling point

Tb, K

373.124

194.686* (*sublimation pressure = 1 atm, ITS-90 secondary ref. point)

81.60

111.67 (ITS-90 secondary ref. point)

81.65

Density of solid at triple point/melting point

ρs, kg/m3

916.700 ±  0.026

1541

919.8

489.8 (490 – 530 over the whole range)

Enthalpy of sublimation

Hsub, kJ/kg

2834.359

573.31 at Tb

261.3 [CC]

600(23) for 53–90K

Enthalpy of fusion

Hmelt, kJ/kg

333.44

196.65 at Tt

29.86(3)

58.5(2)

Enthalpy of vaporization

Hevap, kJ/kg

2500.5 (0°C) 2255.5 (100°C)

 

217

510–584

Specific heat capacity of solid at Tt

cp(s), kJ/kg/K

2.2

1.383

1.9

2.73

Thermal conductivity of solid

λs, W/m/K

2.1

 

0.303 (50 K)

0.4(1) at Tt(extrapolated)

Comments

 

Melting temperature under pressure p: t FC = 0 – 0.00076 p – 1.32E-6 p 2 with p (bar) for 0 <p < 2000 bar

 

Additional transition at 61.55 K, enthalpy change 22.62(14) kJ/kg

Rotational transition in solid at 20.48 K (ITS-90 secondary ref. point) with λ-peak in cp, enthalpy change 5.8 (1) kJ/kg

1.2 Temperature dependence of selected quantities

1.2.1 Density

With sufficient accuracy from 0 to 273 K:

$$\rho =933.31+0.037978T-3.6274\cdot 10^{-4}T^2[\hbox{kgm}^{-3}]. $$

1.2.2 Thermal conductivity

After (Slack 1980), best estimates of λ of Ih H2O ice between 10 K and the melting point at atmospheric pressure:

$$ \lambda =619.2/T+58646/T^3+3.237\cdot 10^{-3}T-1.382\cdot 10^{-5}T^2 \hbox{in W/m/K} $$
(0.3)

This equation gives about 12% higher values than the (Klinger 1980) equation,

$$ \lambda =\frac{567}{T}\hbox{W/m/K} ({T}>50\hbox{ K}) $$
(0.4)

1.2.3 Specific heat capacity at constant pressure

$$ C_{\rm p}=x^3\frac{c_1+c_2x^2+c_3x^6}{1+c_4x^2+c_5x^4+c_6x^8}\hbox{[J/kg/K]} $$

x = T/T t ,T t  = 273.16 K and c1 = 1.843· 105, c2 = 1.6357· 108, c3 = 3.5519· 109, c4 = 1.667· 102, c5 = 6.465· 104, c6 = 1.6935· 106 after Haida et al. (1974), Flubacher et al. (1960) and Giauque and Stout (1936).

Note that the pressure dependence of Cp is only about dCp/dP =  − 8.5e − 10*T [J/K/kg/Pa] for 0.273.15 K at 1 bar.

1.2.4 Latent heat of sublimation

After Feistel (2006) for 0.273.15 K, approximated by a quadratic polynomial,

$$ L_{\rm s}=2636.77+1.65924T-0.0034135T^2\hbox{[kJ/kg]} $$

1.2.5 Viscosity

After Kestin et al. (1978), Hallet (1963) and IAPWS (2003); correlation for temperatures from − 24°C [supercooled] to 373 °C, at saturation pressure, ± 5%:

$$ \begin{aligned} &\eta (T)=A\left({\frac{T}{B}-1} \right)^\alpha \\ &A=1.4147\cdot 10^{-4}[\hbox{Pa s}] \\ &B=226.8[\hbox{K}] \\ &\alpha =-1.5914 \\ \end{aligned} $$

References (Appendix)

  1. 1.

    Bedford RE, Bonnier G, Maas H, Pavese F (1996) Recommended values of temperature on the International Temperature Scale of 1990 for a selected set of secondary reference points, Metrologia. Metrologia 33:133–154

  2. 2.

    Feistel R, Wagner W (2005) High-pressure thermodynamic Gibbs functions of ice and sea ice. J Mar Res 63:95–139

  3. 3.

    Feistel R, Wagner W (2006a) A New Equation of State for H2O Ice Ih. J Phys Chem Ref Data 35(2):1–27

  4. 4.

    Feistel R, Wagner W (2006b) Sublimation Pressure and Sublimation Enthalpy of H2O Ice Ih from 0 to 273.16 K. submitted to Geochimica et Cosmochimica Acta, 22 May 2006

  5. 5.

    Feistel R, Wagner W et al (2005) Numerical implementation and oceanographic application of the Gibbs potential of ice. Ocean Science 1:29–38

  6. 6.

    Flubacher P, Leadbetter AJ et al (1960) Heat capacity of Ice at Low Temperatures. The J Chem Phys 33(6):1751–1755

  7. 7.

    Giauque WF, Stout JW (1936) The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15° to 273°. J Am Chem Soc 58:1144–1150

  8. 8.

    Haida O, Matsuo T et al (1974) Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J Chem Thermodynamics 6:815–825

  9. 9.

    Hobbs PV (1974) Ice physics. Oxford, Clarendon Press

  10. 10.

    Hallet J (1963) The temperature dependence of the viscosity of supercooled water. Proc Phys Soc 82:1046–1050

  11. 11.

    IAPWS (2003) Revised release on the IAPS formulation 1985 for the viscosity of ordinary water substance. Releases of The International Association for the Properties of Water and Steam, IAPWS

  12. 12.

    Kestin J, Solokov M, Wakeham WA (1978) Viscosity of liquid water in the range − 8°C to 150°C, J Phys Chem Ref Data 7(3):941–948

  13. 13.

    Klinger J (1980) Influence of a phase transition of ice on the heat and mass balance of comets. Science 209(July 1, 1980):271.

  14. 14.

    Manzhelii VG (1996) Physics of cryocrystals. Woodbury, New York, AIP Press

  15. 15.

    NIST (2006) Standard Reference Data Program – Web Book, National Institute of Standards and Technology

  16. 16.

    Osborne NS (1939) Heat of fusion of ice. A revision. J Res Nat Bureau Standards (US) 23:643–646

  17. 17.

    Petrenko VF, Whitworth RW (1999) Physics of ice. Toronto, Clarendon Press, Oxford

  18. 18.

    Span R Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J Physical and Chemical Reference Data 25: 1509–1596

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulamec, S., Biele, J., Funke, O. et al. Access to glacial and subglacial environments in the Solar System by melting probe technology. Rev Environ Sci Biotechnol 6, 71–94 (2007). https://doi.org/10.1007/s11157-006-9108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-9108-x

Keywords

Navigation