Skip to main content
Log in

Elimination of methane generated from landfills by biofiltration: a review

  • REVIEW PAPER
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The production of biogas in landfills, its composition and the problems resulting from its generation are all reviewed. Biofiltration is a promising option for the control of emissions to atmosphere of the methane contained in biogas issued from the smaller and/or older landfills. A detailed review of the methane biofiltration literature is presented. The microorganisms, mainly the methanotrophs, involved in the methane biodegradation process, and their needs in terms of oxygen and carbon dioxide utilization, are described. Moreover, the influence of nutrients such as copper, nitrogen and phosphorus, and the process operating conditions such as temperature, pH and moisture content of the biofilter bed, are also presented. Finally, the performance of various filter beds, in terms of their elimination capacities, is presented for laboratory scale biofilters and landfill covers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abichou T, Chanton J, Powelson D, Fleiger J, Escoriaza S, Yuan L, Stern J (2006a) Methane flux and oxidation at two types of intermediate landfill covers. Waste Manag 26(11):1305–1312

    Article  CAS  Google Scholar 

  • Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006b) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228

    Article  CAS  Google Scholar 

  • Acha V, Alba J, Thalasso F (2002) The absolute requirement for carbon dioxide for aerobic methane oxidation by a methanotrophic-heterotrophic soil community of bacteria. Biotechnol Lett 24(9):675–679

    Article  CAS  Google Scholar 

  • Arif MAS, Houwen F, Verstraete W (1996) Agricultural factors affecting methane oxidation in arable soil. Biol Fertil Soil 21(1–2):95–102

    Article  Google Scholar 

  • Auman AJ, Lidstrom ME (2002) Analysis of sMMO-containing type I methanotrophs in Lake Washington sediment. Environ Microbiol 4(9):517–524

    Article  CAS  Google Scholar 

  • Auman AJ, Speake CC, Lidstrom ME (2001) nifH sequences and nitrogen fixation in Type I and Type II methanotrophs. Appl Environ Microbiol 67(9):4009–4016

    Article  CAS  Google Scholar 

  • Ayalon O, Avnimelech Y, Shechter M (2001) Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation. Environ Manag 27(5):697–704

    Article  CAS  Google Scholar 

  • Aye L, Widjaya ER (2006) Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag 26(10):1180–1191

    Article  Google Scholar 

  • Bajic Z, Zeiss C (2001) Methane oxidation in alternative landfill cover soils. In: Proceedings from the 24th Annual Landfill Gas Symposium, March 19–22, Dallas, Texas, USA, SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 145–151

  • Bender M, Conrad R (1994) Methane oxidation activity in various soils and freshwater sediments—Occurrence, characteristics, vertical profiles, and distribution on grain size fractions. J Geophys Res Atmos 99(D8):16531–16540

    Article  CAS  Google Scholar 

  • Bender M, Conrad R (1995) Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol Biochem 27(12):1517–1527

    Article  CAS  Google Scholar 

  • Berestovskaya Y, Vasil’eva LV, Chestnykh OV, Zavarzin GA (2002) Methanotrophs of the psychrophilic microbial community of the russian arctic tundra. Microbiology 71(4):460–466

    Article  CAS  Google Scholar 

  • Berger J, Fornes LV, Ott C, Jager J, Wawra B, Zanke U (2005) Methane oxidation in a landfill cover with capillary barrier. Waste Manag 25(4):369–373

    Article  CAS  Google Scholar 

  • Bergmann J-U, Eichmann H-L, Klein T (1998) Device for removing gases from a landfill. Rehau AG & CO, Patent number: EP 0884117 (Priority number: DE19724430), Rehau, 6 p

  • Bodelier PLE, Frenzel P (1999) Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4 oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl Environ Microbiol 65(5):1826–1833

    CAS  Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation on soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O (1996) Methane oxidation in a neutral landfill cover soil—influence of moisture content, temperature, and nitrogen-turnover. J Environ Qual 25(1):178–183

    Article  CAS  Google Scholar 

  • Boeckx P, Van Cleemput O (2000) Methane oxidation in landfill cover soils. In: Singh SN (ed) Trace gas emissions and plants. Kluwer Academic Publishers, pp 197–213.

  • Bogner JE, Spokas KA, Burton EA (1997) Kinetics of methane oxidation in a landfill cover soil—Temporal variations, a whole landfill oxidation experiment, and modeling of net CH4 emissions. Environ Sci Technol 31(9):2504–2514

    Article  CAS  Google Scholar 

  • Börjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag Res 15(1):33–54

    Article  Google Scholar 

  • Börjesson G, Chanton J, Svensson BH (2001) Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope ratios. J Environ Qual 30:369–376

    Article  Google Scholar 

  • Börjesson G, Sundh I, Tunlid A, Frostegard A, Svensson BH (1998) Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes. FEMS Microbiol Ecol 26(3):207–217

    Google Scholar 

  • Boulygina ES, Kuznetsov BB, Marusina AI, Tourova TP, Kravchenko IK, Bykova SA, Kolganova TV, Galchenko VF (2002) A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 71(4):425–432

    Article  CAS  Google Scholar 

  • Bronson KF, Mosier AR (1994) Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors. Biol Fertil Soil 17:263–268

    Article  CAS  Google Scholar 

  • Brosseau J, Heitz M (1994) Trace gas compound emissions from municipal landfill sanitary sites. Atmos Environ 28(2):285–293

    Article  CAS  Google Scholar 

  • Cai ZC, Mosier AR (2000) Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol Biochem 32(11/12):1537–1545

    Article  CAS  Google Scholar 

  • Cai ZC, Yan XY (1999) Kinetic model for methane oxidation by paddy soil as affected by temperature, moisture and N addition. Soil Biol Biochem 31(5):715–725

    Article  CAS  Google Scholar 

  • Chanton J, Liptay K (2000) Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Global Biogeochem Cycles 14(1):51–60

    Article  CAS  Google Scholar 

  • Chanton JP, Rutkowski CM, Mosher B (1999) Quantifying methane oxidation from landfills using stable isotope analysis of downwind plumes. Environ Sci Technol 33(21):3755–3760

    Article  CAS  Google Scholar 

  • Chiemchaisri W, Visvanathan C, Wu, JS (2001a) Biological activities of methane oxidation in tropical landfill cover soils. J Solid Waste Technol Manag 27(3–4):129–136

    CAS  Google Scholar 

  • Chiemchaisri W, Wu JS, Visvanathan C (2001b) Methanotrophic production of extracellular polysaccharide in landfill cover soils. Water Sci Technol 43(6):151–159

    CAS  Google Scholar 

  • Christophersen M, Kjeldsen P (2001) Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration. Waste Manag Res 19(6):579–594

    CAS  Google Scholar 

  • Christophersen M, Linderod L, Jensen PE, Kjeldsen P (2000) Methane oxidation at low temperatures in soil exposed to landfill gas. J Environ Qual 29(6):1989–1997

    Article  CAS  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60(4):609–640

    CAS  Google Scholar 

  • Contec (Contec Ingenieurgesellschaft fuer Energie und Umwelttechnik) and Landkeis (Landkeis Freudenstadt Abfallwirtschaftsbetrieb) (2004) Methane oxidation filter for the treatment of landfill lean and/or waste gases from municipal waste landfills. Ger. Gebrauchsmusterschrift, Patent number: DE 202004013278, 6 p

  • Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Geochem Cycles 5(4):319–334

    CAS  Google Scholar 

  • Crossman ZM, Abraham F, Evershed RP (2004) stable isotope pulse-chasing and compound specific stable carbon isotope analysis of phospholipid fatty acids to assess methane oxidizing bacterial populations in landfill cover soils. Environ Sci Technol 38(5):1359–1367

    Article  CAS  Google Scholar 

  • Czepiel PM, Mosher B, Crill PM, Harriss, RC (1996) Quantifying the effect of oxidation on landfill methane emissions. J Geophys Res Atmos 101(D11):16721–16729

    Article  CAS  Google Scholar 

  • Dammann B, Streese J, Stegmann R (1999) Microbial oxidation of methane from landfills in biofilters. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 4–9 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 517–524

  • De Visscher A, Van Cleemput O (2003) Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Manage 23:581–591

    Article  CAS  Google Scholar 

  • De Visscher A, Thomas D, Boeckx P, Van Cleemput O (1999) Methane oxidation in simulated landfill cover soil environments. Environ Sci Technol 33(11):1854–1859

    Article  CAS  Google Scholar 

  • Dedysh SN, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Liesack W, Tiedje JM (2002) Methylocapsa acidiphila gen nov, sp nov, a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52(1):251–261

    CAS  Google Scholar 

  • Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187(13):4665–4670

    Article  CAS  Google Scholar 

  • Dedysh SN, Liesack W, Khmelenina VN, Suzina NE, Trotsenko YA, Semrau JD, Bares AM, Panikov NS, Tiedje JM (2000) Methylocella palustris gen nov, sp nov, a new methane-oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50(3):955–969

    CAS  Google Scholar 

  • Del Grosso SJ, Parton WJ, Mosier AR, Ojima DS, Potter CS, Borken W, Brumme R, Butterbach-Bahl K, Crill PM, Dobbie K, Smith KA (2000) General CH4 oxidation model and comparisons of CH4 oxidation in natural and managed systems. Global Biogeochem Cycles 14(4):999–1019

    Article  CAS  Google Scholar 

  • Delhoménie M-C, Heitz M (2005) Biofiltration of air: a review. Press Crit Rev Biotechnol 25(1–2):53–72

    Article  CAS  Google Scholar 

  • Desideri U, Di Maria F, Leonardi D, Proietti S (2003) Sanitary landfill energetic potential analysis: a real case study. Energy Conver Manag 44:1969–1981

    Article  CAS  Google Scholar 

  • Dobbie KE, Smith KA (1996) Comparison of CH4 oxidation rates in woodland, arable and sand aside soils. Soil Biol Biochem 28(10–11):1357–1365

    Article  CAS  Google Scholar 

  • Du Plessis CA, Strauss JM, Sebapalo EMT, Riedel K-HJ (2003) Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82:1359–1365

    Article  CAS  Google Scholar 

  • Dunfield P, Knowles R (1995) Kinetics of methane oxidation by nitrate, nitrite ans ammonium in a humisol. Appl Environ Microbiol 61(8):3129–3135

    CAS  Google Scholar 

  • Dunfield PF, Liesack W, Henckel T, Knowles R, Conrad, R (1999) High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph. Appl Environ Microbiol 65(3):1009–1014

    CAS  Google Scholar 

  • Environnement Canada (2006) Landfill Gas.www.ec.gc.ca/nopp/lfg/en/index.cfm (Visited in August 2006)

  • EPA (2005) Inventory of US greenhouse Gas emissions and sink: 1990–2003. US Environmental Protection Agency, Washington, USA. www.yosemite.epa.gov/oar/globalwarming.nsf/UniqueKeyLookup/RAMR69V4ZS/$File/05_complete_report.pdf (Visited in August 2006)

  • EPA (2006) Methane: sources and emissions, Human-related sources. www.epa.gov/methane/sources.html#landfills (Visited in August 2006)

  • Erwin DP, Erickson IK, Delwiche ME, Colwell FS, Strap JL and Crawford RL (2005) Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Appl Environ Microbiol 71(4):2016–2025

    Article  CAS  Google Scholar 

  • Ewall M (1999) Primer on Landfill Gas as "Green" Energy. Report for Energy Justice network, www.penweb.org/issues/energy/green4.html (Visited in August 2006)

  • Gebert J, Groengroeft A (2006a) Passive landfill gas emission—Influence of atmospheric pressure and implications for the operation of methane-oxidizing biofilters. Waste Manag 26:245–251

    Article  CAS  Google Scholar 

  • Gebert J, Groengroeft A (2006b) Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag 26:399–407

    Article  CAS  Google Scholar 

  • Gebert J, Groengroeft A, Miehlich G (2001) Microbial reduction of methane and trace gas emissions in a biofilter. In: Proceedings from the 8th International Waste Management and Landfill Symposium S Margherita di Pula, Cagliari, Italy, 1–5 October 2001, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 585–593

  • Gebert J, Groengroeft A, Miehlich G (2003) Kinetics of microbial landfill methane oxidation in biofilter. Waste Manag 23:609–619

    Article  CAS  Google Scholar 

  • Giani L, Bredenkamp J, Eden I (2002) Temporal and spatial variability of CH4 dynamics of landfill cover soils. J Plant Nutr Soil Sci 165:205–210

    Article  CAS  Google Scholar 

  • Gielecki M (1997) Renewable Energy Annual 1996. Report prepared by the Energy Information Administration, US Department of Energy, Washington, DOE/ELA-0603(96), Distribution category UC-950, 180 p

  • Goossens MA (1996) Landfill gas power plants. Renew Energy 9(1–4):1015–1018

    Article  Google Scholar 

  • Grossman EL, Cifuentes LA, Cozzarelli IM (2002) Anaerobic methane oxidation in a landfill-leachate plume. Environ Sci Technol 36:2436–2442

    Article  CAS  Google Scholar 

  • Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471

    CAS  Google Scholar 

  • Haubrichs R, Widmann R (2006) Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag 26:408–416

    Article  CAS  Google Scholar 

  • Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679

    Article  CAS  Google Scholar 

  • Hesselsoe M, Boysen S, Iversen N, Jorgensen L, Murrell J, McDonald I, Radajewski S, Thestrup H, Roslev P (2005) Degradation of organic pollutants by methane grown microbial consortia. Biodegradation 16(5):435–448

    Article  CAS  Google Scholar 

  • Hettiaratchi JPA, Stein VB (2001) Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation. In: Proceedings of the 17th International Conference on Solid Waste Technology and Management, Philadelphia, PA, Oct. 20–24, Published by the J Solid Waste Technol Manag, Silver Spring, MD, USA, pp 465–476

  • Hettiaratchi JPA, Stein VB, Achari G (2000) Biofiltration: A cost-effective technique for controlling methane emissions from sub-surface sources. In: Singhal, Mehrotra (eds) 6th Environmental Issues and Management of Waste in Energy and Mineral Production, Balkema Rotterdam, Netherlands, pp 291–299

  • Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen nov, sp nov, a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55(5):1817–1826

    Article  CAS  Google Scholar 

  • Hilger H, Humer M (2003) Biotic landfill cover treatments for mitigating methane emissions. Environ Monitor Assess 84(1–2):71–84

    Article  CAS  Google Scholar 

  • Hilger HA, Cranford DF, Barlaz MA (2000a) Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biol Biochem 32(4):457–467

    Article  CAS  Google Scholar 

  • Hilger HA, Wollum AG, Barlaz MA (2000b) Landfill methane oxidation response to vegetation, fertilization, and liming. J Environ Qual 29(1):324–334

    Article  CAS  Google Scholar 

  • Horz H-P, Rich V, Avrahami S, Bohannan BJ M (2005) Methane-oxidizing bacteria in a California upland grassland soil: diversity and response to simulated global change. Appl Environ Microbiol 71(5):2642–2652

    Article  CAS  Google Scholar 

  • Hudgins M, Green L (2000) Innovative landfill gas and odor control using an aerobic landfill system. In: Odors and VOC Emissions 2000, Conference Proceedings, Cincinnati, OH, United States, Apr. 16–19, Published by Water Environment Federation, pp 619–641

  • Hughes KL, Daneel RA, Senior E (2002) Physiological characterization of a methanol-oxidizing microbial association isolated from landfill final covering soil. South Afr J Sci 98:434–437

    CAS  Google Scholar 

  • Humer M, Lechner P (1999a) Methane oxidation in compost cover layers on landfills. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S Margherita di Pula, Cagliari, Italy, 4–8 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 403–410

  • Humer M, Lechner P (1999b) Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag Res 17(6):443–452

    CAS  Google Scholar 

  • Humer M, Lechner P (2001) Microbial methane oxidation for the reduction of landfill gas emissions. J Solid Waste Technol Manag 27(3–4):146–151

    CAS  Google Scholar 

  • Hupe K, Heyer KU, Stegmann R (1998) Hazardous sites and landfills utilize compost. Biocycle 39(6):79

    Google Scholar 

  • Hütsch BW (1998a) Methane oxidation in arable soil as inhibited by ammonium, nitrite, and organic manure with respect to soil pH. Biol Fertil Soil 28:27–35

    Article  Google Scholar 

  • Hütsch BW (1998b) Tillage and land use effects on methane oxidation rates and their vertical profiles in soil. Biol Fertil Soil 27:284–292

    Article  Google Scholar 

  • Hütsch BW, Webster CP, Powlson DS (1994) Methane oxidation in soil as affected by land use, soil pH, N fertilization. Soil Biol Biochem 26(12):1613–1622

    Article  Google Scholar 

  • Jäckel U, Schnell S, Conrad R (2001) Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol Biochem 33(7–8):965–971

    Article  Google Scholar 

  • Jaffrin A, Bentounes N, Joan AM, Makhlouf S (2003) Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosyst Eng 86(1):113–123

    Article  Google Scholar 

  • Janni KA, Maier WJ, Kuehn TH, Yang CH, Bridges BB, Vesley D, Nellis MA (2001) Evaluation of Biofiltration of Air—an innovative air pollution control strategy. ASHRAE Trans 107(1):198–214

    CAS  Google Scholar 

  • Jones HA, Nedwell DB (1993) Methane emission and methane oxidation in landfill cover soil. FEMS Microbiol Lett 102(3–4):185–195

    Article  CAS  Google Scholar 

  • Jorio H, Heitz M (1999) Traitement de l’air par biofiltration. Can J Civil Eng 26:402–424

    Article  Google Scholar 

  • Jorio H, Payre G, Heitz M (2003) Mathematical modeling of gas-phase biofilter performance. J Chem Technol Biotechnol 78:834–846

    Article  CAS  Google Scholar 

  • Kallistova AY, Kevbrina MV, Nekrasova VK, Glagolev MV, Serebryanaya MI, Nozhevnikova AN (2005) Methane oxidation in landfill cover soil. Microbiology 74(5):608–614

    Article  CAS  Google Scholar 

  • Kalyuzhnaya MG, Stolyar SM, Auman AJ, Lara JC, Lidstrom ME, Chistoserdova L (2005) Methylosarcina lacus sp nov, a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Methylosarcina. Int J Syst Evol Microbiol 55(6):2345–2350

    Article  CAS  Google Scholar 

  • Kelly DP, Anthony C, Murrell JC (2005) Insights into the obligate methanotroph Methylococcus capsulatus. Trends Microbiol 13(5):195–198

    Article  CAS  Google Scholar 

  • Kettunen RH, Rintala JA (1997) The effect of low temperature (5–29°C) and adaptation on the methanogenic activity of biomass. Appl Microbiol Biotechnol 48:570–576

    Article  CAS  Google Scholar 

  • Kightley D, Nedwell DB, Cooper M (1995) Capacity for methane oxidation in landfill cover soils measured in laboratory-scale soil microcosms. Appl Environ Microbiol 61(2):592–601

    CAS  Google Scholar 

  • Kim HJ, Graham DW (2001) Effect of oxygen level on simultaneous nitrogenase and sMMO expression and activity in Methylosinus trichosporium OB3b and its sMMOC mutant, pp319: aerotolerant N2 fixation in PP319. FEMS Microbiol Lett 201(2):133–138

    Article  CAS  Google Scholar 

  • King GM, Schnell S (1994) Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature 370:282–284

    Article  CAS  Google Scholar 

  • King GM, Schnell S (1998) Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol 64(1):253–257

    CAS  Google Scholar 

  • Kjeldsen P, Dalager A, Broholm K (1997) Attenuation of methane and nonmethane organic compounds in landfill gas affected soils. J Air Waste Manag Assoc 47(12):1268–1275

    CAS  Google Scholar 

  • Klusman RW, Dick CJ (2000) Seasonal variability in CH4 emissions from a landfill in a cool, semiarid climate. J Air Waste Manag Assoc 50(9):1632–1636

    CAS  Google Scholar 

  • Kotelnikova S (2002) Microbial production and oxidation of methane in deep subsurface. Earth Sci Rev 58(3–4):367–395

    Article  CAS  Google Scholar 

  • Kravchenko IK (2002) Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242(1):157–162

    Article  CAS  Google Scholar 

  • Kumar S, Mondal AN, Gaikwad SA, Devotta S, Singh RN (2004) Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmos Environ 38:4921–4929

    Article  CAS  Google Scholar 

  • Kumaraswamy S, Ramakrishnan B, Sethunathan N (2001) Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J Environ Qual 30(6):2195–2201

    Article  CAS  Google Scholar 

  • Kyoto protocol (1998) Kyoto protocol to the United Nations framework convention on climate change. www.unfccc.int/resource/docs/convkp/kpeng.pdf (Visited in August 2006)

  • Le Mer J, Roger P (2001) Production, oxidation, emission and consumption of methane by soils: A review. Euro J Soil Biol 37(1):25–50

    Article  CAS  Google Scholar 

  • Lee GY, Cho YL, Yang CR, Lee DH, Won YM, Lee YJ, Park YJ (2002) Landfill structure using concept of multi-layered reactors and method for operating the same. ENV21 Co., Ltd., PCT International Application, Patent number: WO0243883, S Korea, 65 p

  • Lidstrom ME (2001) Aerobic methylotrophic prokaryotes. In: Dworkin (ed) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn, release 3.7. Springer-Verlag, New York, Available on-line at http://link.springer-ny.com/link/service/books/10125/ (Visited in August 2006)

  • Lindner AS, Semrau JD, Adriaens P (2005) Substituent effect on the oxidation of substituted biphenyl cogeners by type II methanotrop strain CSC1. Arch Microbiol 183:266–276

    Article  CAS  Google Scholar 

  • Ma TH, Xu C, Liao S, H McConnel, Jeong BS, Won CD (1996) In situ monitoring with the Tradescantia bioassays on the genotoxicity of gaseous emissions from a closed landfill site and an incinerator. Mut Res 359:39–52

    Google Scholar 

  • Mancinelli RL (1995) The regulation of methane oxidation in soil. Annu Rev Microbiol 49:581–605

    Article  CAS  Google Scholar 

  • March R (1994) Biofiltration for emissions abatement—Réduction des émissions par biofiltration. Euro Coatings J 7–8:528

    Google Scholar 

  • Maurice C, Ettala M, Lagerkvist A (1999) Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water Air Soil Pollut 113(1):203–216

    Article  CAS  Google Scholar 

  • McLain J (2000) Rising CO2 threatens forest methane sink. 100th General Meeting of the American Society for Microbiology, Los Angeles, California, USA, May 21–25, 2000, Published by the Journal of American Society for Microbiology, Paper N-101.

  • McLain TEJ, Kepler BT, Ahmann MD (2002) Belowground factors mediating changes in methane consumption in a forest soil under elevated CO2. Global Biogeochem Cycles 16(3):(23) 1–14

    Google Scholar 

  • Min H, Chen ZY, Wu WX, Chen MC (2002) Microbial aerobic oxidation of methane in paddy soil. Nutr Cycling Agroecosyst 64(1–2):79–85

    Article  CAS  Google Scholar 

  • Mingxing W, Jing L (2002) CH4 emission and oxidation in Chinese rice paddies. Nutrient Cycling Agroecosystems 64:43–55

    Article  Google Scholar 

  • Mohanty RS, Bharati K, Deepa N, Adhya KT (2000) Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol Environ Saf 47:277–284

    Article  CAS  Google Scholar 

  • Mor S, De Visscher A, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture responses. Waste Manag 26(4):381–388

    Article  CAS  Google Scholar 

  • Murphy JD, McCarthy K (2005) The optimal production of biogas for use as a transport fuel in Ireland. Renew Energy 30:2111–2127

    Article  CAS  Google Scholar 

  • Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. J Gen Microbiol 129(11):3481–3486

    CAS  Google Scholar 

  • Nguyen PHL, Kuruparan P, Visvanathan C (2006) Anaerobic digestion of municipal solid waste as a treatment prior to landfill. Bioresource Technol 98(2):380–387

    Google Scholar 

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Comeau J F, Vigneux J, Heitz M (2004a) Atténuation de l’effet de serre par biofiltration du méthane émis par les lieux d’enfouissement sanitaire. 7\(2^{i\grave{e}me}\) Congrès de l’Association Canadienne Française pour l’Avancement des Sciences (ACFAS), Université du Québec à Montréal, Canada, May 10–14

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2004b) Biogas, a real problem: Biofiltration, a promising solution. In: Proceedings of the USC-CSC-TRG Conference on Biofiltration, October 20–22, Los Angeles, California, Published by The Reynolds Group, Tustin, California, USA, pp 73–80

  • Nikiema J, Bibeau L, Lavoie J, Brzezinski R, Vigneux J, Heitz M (2005) Biofiltration of methane: an experimental study. Chem Eng J 113(2–3):111–117

    Article  CAS  Google Scholar 

  • Novikov VV, Stepanov AL (2002) Coupling of microbial processes of methane and ammonium oxidation in soils. Microbiology 71(2):234–237

    Article  CAS  Google Scholar 

  • Nozhevnikova AN, Lifshitz AB, Lebedev VS, Zavarzin GA (1993) Emission of methane into the atmosphere from landfills in the former USSR. Chemosphere 26(1–4):401–417

    Article  CAS  Google Scholar 

  • Nozhevnikova AN, Nekrasova VK, Kevbrina MV, Kotsyurbenko OR (2001) Production and oxidation of methane at low temperature by the microbial population of municipal sludge checks situated in north-east Europe. Water Sci Technol 44(4):89–95

    CAS  Google Scholar 

  • Oakley CJ, Murrell JC (1988) nifH genes in the obligate methane oxidizing bacteria. FEMS Microbiol Lett 49:53–57

    Article  Google Scholar 

  • Ottengraf SPP (1986) Exhaust gas purification. In: Rehm HJ, Reed G (eds) Biotechnology, a comprehensive treatise, vol 8. VCH Verlagsgesellschaft, Weinheim, Germany, pp 426–452

  • Ozkaya B, Demir A, Bilgili MS (2006) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modelling Softw (in press)

  • Park S, Brown KW, Thomas JC (2002) The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag Res 20(5):434–444

    Article  CAS  Google Scholar 

  • Park SY, Brown KW, Thomas JC (2004) The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design. Water Air Soil Pollut 155(1–4):63–85

    Article  CAS  Google Scholar 

  • Perera LAK, Achari G, Hettiaratchi JPA (2002) Determination of source strength of landfill gas: a numerical modeling approach. J Environ Eng ASCE 128(5):461–471

    Article  CAS  Google Scholar 

  • Perry RH, Green DW, Maloney JO (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York

    Google Scholar 

  • Popov V (2005) A new landfill system for cheaper landfill gas purification. Renew Energy 30(7):1021–1029

    Article  CAS  Google Scholar 

  • Raghoebarsing AR, Pol A, van de Pas-Schoonen KT, Smolders AJP, Ettwig KF, Rijpstra WIC, Schouten S, Sinninghe Damsté JS, Op den Camp HJM, Jetten MSM, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921

    Article  CAS  Google Scholar 

  • Reay DS, Nedwell DB (2004) Methane oxidation in temperate soils: effects of inorganic N. Soil Biol Biochem 36:2059–2065

    Article  CAS  Google Scholar 

  • Reginster J (1999) Problématique de la décharge de Mont-Saint-Guibert: État de la situation et risques pour la population. Report of the “Société Publique d’Aide à la Qualité de l’Environnement de la Région wallonne”, Published by Association des Habitants de Louvain-la-Neuve, Louvain-la-Neuve, Belgique, 160 p

  • Reinhart DR, Al-Yousfi AB (1996) The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag Res 14:337–346

    Article  CAS  Google Scholar 

  • Scheutz C, Winther K, Kjeldsen P (2000) Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron. Environ Sci Technol 34(12):2557–2563

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption-a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51

    Article  CAS  Google Scholar 

  • Sitaula BK, Hansen S, Sitaula JIB, Bakken LR (2000) Methane oxidation potentials and fluxes in agricultural soil: effects of fertilization and soil compaction. Biogeochemistry 48(3):323–339

    Article  CAS  Google Scholar 

  • Sly LI, Bryant LJ, Cox JM, Anderson JM (1993) Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl Microbiol Biotechnol 39(3):400–404

    Article  CAS  Google Scholar 

  • Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graff C, Golvan YM-L, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?. Waste Manag 26(5):516–525

    Article  CAS  Google Scholar 

  • Stein VB, Hettiaratchi JPA (2001) Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ Technol 22(1):101–111

    Article  CAS  Google Scholar 

  • Stein VB, Hettiaratchi JPA, Achari G (2001) A numerical model for biological oxidation and migration of methane in soils. ASCE Prac Period Hazard Toxic Radioactive Waste Manag 5(4):225–234

    Article  CAS  Google Scholar 

  • Straka F, Crha J, Musilova M, Kuncarova M (1999) LFG-Biofilters on old landfills. In: Proceedings of Sardinia 99, 7th International Waste Management and Landfill Symposium, S Margherita di Pula, Cagliari, Italy, 4–9 October 1999, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 507–516

  • Stralis-Pavese N, Bodrossy L, Reichenauer TG, Weilharter A, Sessitsch A (2006) 16S rRNA based T-RFLP analysis of methane oxidizing bacteria—Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl Soil Ecol 31:251–266

    Article  Google Scholar 

  • Streese J, Stegmann (2003) Microbial oxidation of methane from old landfills in biofilters. Waste Manag 23:573–580

  • Streese J, Dammann B, Stegmann R (2001) Reduction of methane and trace gas emissions from former landfills in biofilters. In: Proceedings of the 8th International Waste Management and Landfill Symposium S Margherita di Pula, Cagliari, Italy, 1–5 October 2001, Published by SWANA-Solid Waste Association of North America, Silver Spring, MD, USA, pp 575–584

  • Tagaris E, Sotiropoulou R-EP, Pilinis C, Halvadakis CP (2003) A methodology to estimate odors around landfill sites: the use of methane as an odor index and its utility in landfill sitting. J Air Waste Manag Assoc 53(5):629–634

    CAS  Google Scholar 

  • Toutant C (1994) L’atmosphère terrestre, ses ennemis et leur contrôle. In: Éditions Odile Germain, Québec, Canada, p 250

  • Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131

    Article  CAS  Google Scholar 

  • Tsai WT (2006) Bioenergy from landfill gas (LFG) in Taiwan. Renew Sustainable Energy Rev 11(2):331–344

    Article  Google Scholar 

  • Tsubota J, Eshinimaev BTs, Khmelenina VN, Trotsenko YA (2005) Methylothermus thermalis gen nov, sp nov, a novel moderately thermophilic obligate methanotroph from a hot spring in Japan. Int J Syst Evol Microbiol 55:1877–1884

    Article  CAS  Google Scholar 

  • USDE (United States Department of Energy) (2005) US climate change technology program—technology options for the near and long term. Report, published by USDE, August 2005, 210 p

  • Valentine DL (2002) Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie van Leeuwenhoek 81:271–282

    Article  CAS  Google Scholar 

  • Van Stempvoort D, Maathuis H, Jaworski E, Mayer B, Rich K (2005) Oxidation of fugitive methane in ground water linked to bacterial sulphate reduction. Ground Water 43(2):187–199

    Article  CAS  Google Scholar 

  • Visvanathan C, Pokhrel D, Cheimchaisri W, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17(4):313–323

    CAS  Google Scholar 

  • Vorholt JA (2002) Cofactor-dependent pathways of formaldehyde oxidation in methylotrophic bacteria. Arch Microbiol 178(4):239–249

    Google Scholar 

  • Wang Z-P, Ineson P (2003) Methane oxidation in a temperate coniferous forest soil: effects of inorganic N. Soil Biol Biochem 35:427–433

    Article  CAS  Google Scholar 

  • Warmer Bulletin (2000) Landfill. Information Sheet, Published by Residua, Skipton, North Yorkshire, United Kingdon, 4 p

  • Whalen SC, Reeburgh WS (1996) Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol Biochem 28(10):1271–1281

    Article  CAS  Google Scholar 

  • Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56:3405–3411

    CAS  Google Scholar 

  • Whitman WB, Bowen TL, Boone DR (1999) The methanogenic bacteria. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, release 3.0. Springer-Verlag, New York, Available on-line at http://link.springer-ny.com/link/service/books/10125/ (Visited in August 2006)

  • Whittenbury R, Phillips KC, Wilkinson JF (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61(2):205–218

    CAS  Google Scholar 

  • Wilshusen JH, Hettiaratchi JPA, Stein VB (2004) Long-term behavior of passively aerated compost, methanotrophic biofilter columns. Waste Manage 24(7):643–653

    Article  CAS  Google Scholar 

  • Wise MG, McArthur JV, Shimkets LJ (1999) Methanotroph diversity in landfill soil: isolation of novel type I, type II methanotrophs whose presence was suggested by culture-independent 16S ribosomal DNA analysis. Appl Environ Microbiol 65(11):4887–4897

    CAS  Google Scholar 

  • Yongzhi W, Hu W (2002) Research and application of biogas decontamination system. Report prepared by the Mianzhu Rural Energy Bureau and the Mianzhu Environmental Protection Bureau, Sichuan, China, Copyright for the Ecological Sanitation Research, Stockholm

  • Zamorano M, Pérez Pérez JI, Pavés IA, Ridao AR (2006) Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew Sustainable Energy Rev (In press)

  • Zani S, Mellon MT, Collier JL, Zehr JP (2000) Expression of nifH genes in natural microbial assemblages in Lake George, New York, detected by reverse transcriptase PCR. Appl Environ Microbiol 66:3119–3124

    Article  CAS  Google Scholar 

  • ZWA-Zero Waste America (2006) Landfills: Hazardous to the environment. www.zerowasteamerica.org/Landfills.htm (Visited in August 2006)

Download references

Acknowledgements

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for their financial contribution to the project and express their gratitude to Dr. P. Lanigan for text review. One of the authors (J. Nikiema) would like to thank the NSERC for providing a scholarship for her doctoral studies (Canada Graduate Scholarships Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Heitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikiema, J., Brzezinski, R. & Heitz, M. Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6, 261–284 (2007). https://doi.org/10.1007/s11157-006-9114-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-9114-z

Keywords

Navigation