Skip to main content
Log in

Biodeterioration of crude oil and oil derived products: a review

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Biodeterioration of crude oil and oil fuels is a serious economic and an environmental problem all over the world. It is impossible to prevent penetration of microorganisms in oil and fuels both stored in tanks or in oilfields after drilling. Both aerobic and anaerobic microorganisms tend to colonise oil pipelines and oil and fuel storage installations. Complex microbial communities consisting of both hydrocarbon oxidizing microorganisms and bacteria using the metabolites of the former form an ecological niche where they thrive. The accumulation of water at the bottom of storage tanks and in oil pipelines is a primary prerequisite for development of microorganisms in fuels and oil and their subsequent biological fouling. Ability of microorganisms to grow both in a water phase and on inter-phase of water/hydrocarbon as well as the generation of products of their metabolism worsen the physical and chemical properties of oils and fuels. This activity also increases the amount of suspended solids, leads to the formation of slimes and creates a variety of operational problems. Nowadays various test-systems are utilized for microbial monitoring in crude oils and fuels; thus allowing an express determination of both the species and the quantities of microorganisms present. To suppress microbial growth in oils and fuels, both physico-mechanical and chemical methods are applied. Among chemical methods, the preference is given to substances such as biocides, additives, the anti-freezing agents etc that do not deteriorate the quality of oil and fuels and are environmentally friendly. This review is devoted to the analysis of the present knowledge in the field of microbial fouling of crude oils and oil products. The methods utilized for monitoring of microbial contamination and prevention of their undesirable activities are also evaluated. The special focus is given to Russian scientific literature devoted to crude oil and oil products biodeterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aeckersberg F, Bak F, Widdel F (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156:5–14

    CAS  Google Scholar 

  • Aeckersberg F, Rainey F, Widdel F (1998) Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170:361–369

    CAS  Google Scholar 

  • Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration, 2nd edn. Cambridge University Press, UK

    Google Scholar 

  • Amick JW (1974) Oil-soluble biocide combination for distillate fuels. Patent # 514496

  • Anderson RK, Effendizade SM (1989) Bactericides for biocorrosion suppression in gas-oil industry. VNIIOENG 8:1–50 [In Russian]

    Google Scholar 

  • Asturias JA, Timmis KN (1993) Three different 2,3- dihydroxybiphenyl 1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J. Bacteriol 175:4631–4640

    CAS  Google Scholar 

  • Austin PW, Morpeth FF (1994) Antimicrobial composition comprising N-hydroxy heterocyclic thiones. Patent # 219876

  • Bailey CA, May ME (1979) Evaluation of microbiological test kits for hydrocarbon fuel system. Appl. Environ. Microbiol 37(5):871–877

    Google Scholar 

  • Belyaeva YeI, Brovko LYu, Trdatyan IYu, Ugarova NN, Rainina EI (1983) Means of cutting fluids biocontamination determination. Inventors certificate # 1150267 [In Russian]

  • Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeterior Biodegrad 47(2):107–112

    CAS  Google Scholar 

  • Birshteher E (1957) Oil microbiology. Gostoptehizdat, L. [In Russian]

  • Bonch-Osmolovskaya EA, Miroshnichenko ML, Lebedinsky AV, Chernyh NA, Nazina TN, Ivoilov VS, Belyaev SS, Boulygina ES, Lysov YuP, Perov AN, Mirzabekov AD, Hippe H, Stackebrandt E, L’Haridon S, Jeanthon C (2003) Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69(10):6143–6151

    CAS  Google Scholar 

  • Boszczyk-Maleszak H, Zabost A, Wolicka D, Kacieszczenko J (2006) Effectiveness of biodegradation of petroleum products by mixed bacterial populations in liquid medium at different pH values. Pol J Microbiol 55(1):69–73

    CAS  Google Scholar 

  • Bugg TDH, Winfield CJ (1998) Enzymatic cleavage of aromatic rings: mechanistic aspects of the catechol dioxygenases and later enzymes of bacterial oxidative cleavage pathways. Nat Prod Rep 15(5):513–530

    CAS  Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by Cunningbatella elegans. Appl Environ Microbiol 47(1):119–124

    CAS  Google Scholar 

  • Chung YC, Chen HC, Shyu YT, Hua J (2000) Temperature and water effects on the biodeterioration for marine fuel oil. Fuel. 79:1525–1532

    CAS  Google Scholar 

  • Chesneau HL (2000) The silent fuel killers (stability and microbiologicals). In: Proceedings of 2000 International Joint Power Generation Conference, Maiami Beach, Florida, July 23–26, pp 1–8

  • Costerton JW, Lashen ES (1984) Influence of biofilm on efficacy of biocides on corrosion-causing bacteria. Mater Perform 23(2):13–18

    CAS  Google Scholar 

  • Davidova I, Hicks MS, Fedorak PM, Suflita JM (2001) The influence of nitrate on microbial processes in oil industry production waters. J Ind Microbiol Biotechnol 27(2):80–86

    CAS  Google Scholar 

  • Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett 204:205–211

    CAS  Google Scholar 

  • Efremenko E, Azizov R, Makhlis T, Krupianko P, Varfolomeyev S (2002) Bioluminescent method for quantification and kinetic investigation of oil-degrading bacteria. Proce Petrochem Oil Refin 4(11):79–83

    Google Scholar 

  • Efremenko EN, Azizov RE, Raeva AA, Abbasov VM, Varfolomeyev SD (2005) An approach to the express control of oil spill bioremediation by bioluminescent method of intracellular ATP determination. Int Biodeterior Biodegrad 56:94–100

    CAS  Google Scholar 

  • Egorov NS, Toropova EG, Ugarova NN, Brovko LYu, Matyusha GV, Gerasimenko AA, Samunina AA (1985) Method of quantitative assessment of lubricant oils biocontamination. Inventors certificate # 1311259 [In Russian]

  • Ehrenreich P, Behrends A, Harder J, Widdel F (2000) Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria. Arch Microbiol 173(1):58–64

    CAS  Google Scholar 

  • Eisentraeger A, Schmidt M, Murrenhoff H, Dott W, Hahn S (2002) Biodegradability testing of synthetic ester lubricants-effects of additives and usage. Chemosphere 48(1):89–96

    CAS  Google Scholar 

  • Ferrari MD, Neirotti E, Albornoz C (1998) Occurrence of heterotrophic bacteria and fungi in an aviation fuel handling system and its relationship with fuel fouling. Rev Argent Microbiol 30(3):105–114

    CAS  Google Scholar 

  • Foss S, Heyen U, Harder J (1998) Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, a-pinene, 2-carene, and a-phellandrene) and nitrate. Syst. Appl Microbiol 21:237–244

    CAS  Google Scholar 

  • Frundzhan VG, Brovko LYu, Karabasov MA, Ugarova NN (1997) Bioluminescent assay for antibiotic sensitivity of microbe cells in the septic blood. Appl Biochem Microbiol 4:455–460 [in Russian]

    Google Scholar 

  • Frundzhan VG, Brovko LYu, Babunova VS, Kartashova VM, Ugarova NN (1999) Bioluminescent assay for total bacterial contamination of crude milk. Appl Biochem Microbiol 35(3):358–365 [in Russian]

    Google Scholar 

  • Frundzhan VG, Ugarova NN (2000) Bioluminescent detection of total bacterial contamination of crude milk. Moscow State Bulletin. Line 2. Chemistry 41(6):407–410 [in Russian]

    Google Scholar 

  • Frundzhan VG, Babunava VS, Ugarova NN (2002) Bioluminescent detection of microbe contamination of crude chopped beef. Moscow State Bulletin. Line 2. Chemistry 43(6):389–392 [in Russian]

    Google Scholar 

  • Fukui M, Harms G, Rabus R, Schramm A, Widdel F, Zengler K, Boreham C, Wilkers H (1999) Anaerobic degradation of oil hydrocarbons by sulfate-reducing and nitrate-redusing bacteria. Microbial Biosystems: New Frontiers. In: Bell CR, Brylinsky M, Johnson-Green P (eds) Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada

  • Gardner LR, Stewart PS (2002) Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29:354–360

    CAS  Google Scholar 

  • Gaylarde CG, Bento FM, Kelley J (1999) Microbial contamination of stored hydrocarbon fuels and its control. Rev Microbiol 30:1–10

    CAS  Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field Brine. Appl Environ Microbiol 66(6):2491–2501

    CAS  Google Scholar 

  • Gilewicz M, Monpert G, Acquaviva M, Mille G, Betrand J-C (1991) Anaerobic oxidation of 1-n-heptadecene by a marine denitrifying bacterium. Appl Microbiol Biotechnol 36:252–256

    CAS  Google Scholar 

  • Gilvanova EA, Usanov NG (2003) Quantitative assessment of biocidal activity of chemical compounds by soil microbial association. Prikl Biokhim Mikrobiol 39(3):329–334 [In Russian]

    CAS  Google Scholar 

  • Girotti S, Zanetti F (1998) Wastewater and sludge: The rapid determination of microbial content by ATP bioluminescence. Annali di Cmimica 88 3–4:291–298

    Google Scholar 

  • Gottshalk G (1982) Metabolism of bacteria. “Mir”, Moscow [In Russian]

  • Haak B, Fetzner S, Lingens F (1995) Cloning, nucleotide sequence, and expression of the plasmid-encoded genes for the twocomponent 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS. J Bacteriol 177:667–675

    CAS  Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67(2):225–243

    CAS  Google Scholar 

  • Haggett RD, Morchat RM (1992) Microbiological contamination: Biocide treatment in naval distillate fuel. Int Biodeterior Biodegrad 29(1):87–99

    Google Scholar 

  • Harder J, Probian C (1995) Microbial degradation of monoterpenes in the absence of molecular oxygen. Appl Environ Microbiol 61:3804–3808

    CAS  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Appl Environ Microbiol 65(3):999–1004

    CAS  Google Scholar 

  • Haus F, German J, Junter GA (2001) Primary biodegradability of mineral base oils in relation to their chemical and physical characteristics. Chemosphere 45(6–7):983–990

    CAS  Google Scholar 

  • Haus F, Boissel O, Junter GA (2003) Multiple regression modelling of mineral base oil biodegradability based on their physical properties and overall chemical composition. Chemosphere 50(7):939–948

    CAS  Google Scholar 

  • Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344–352

    CAS  Google Scholar 

  • Heath DJ, Lewis CA, Rowland SJ (1997) The use of high temperature gas chromatography to study the biodegradation of high molecular weight hydrocarbons. Org Geochem 26(11–12):769–785

    CAS  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    Google Scholar 

  • Heitkamp MA, Freeman JP, Miller DW, Cerniglia CE Pyrene (1988) Degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol 54(10):2556–2565

    CAS  Google Scholar 

  • Hill E (1967) Biodeterioration of petroleum products. In: Proc. of IX Symposium Microbiology Inst. of Petrol., London, pp 19–20

  • Hsu JC (1988) Biocide composition. Patent # 244771

  • Hsu JC (1991) Method for inhibiting growth of bacteria, fungi or algae by treatment with biocide composition. Patent # 674835

  • Jorgensen BB, Weber A, Zopfi J (2001) Sulfate reduction and anaerobic methane oxidation in Black Sea sediments. Deep Sea Research Part I: Oceanograph. Res. Papers 48 (9):2097–2120

    Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol 182(8):2059–2067

    CAS  Google Scholar 

  • Kholodenko VP, Chugunov VA, Zhigletcova SK, Rodin VB, Ermolenko ZM, Fomchenko VM, Irkhina IA, Kobelev VS, Volkov VYa (2001) Development of biotechnological methods of environment oil pollution elimination. Ros Khim Zh XLV(5–6):135–141 [In Russian]

    Google Scholar 

  • Knight DJ, Cooke M (2002) The biocides business. Wiley-VCH, Germany

    Google Scholar 

  • Kodama Yu, Watanabe K (2003) Isolation and characterization of sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69(1):107–112

    Google Scholar 

  • Kopteva ZhP, Zanina VV, Piliashenko-Novokhatnyi AI, Kopteva AE, Kozlova IA (2001) Formation of microbial populations on the surface of protective coatings. Mikrobiol Z 63(2):3–9 [In Russian]

    Google Scholar 

  • Kuznetsov VA, Shebshaevich LG, Topchiev DA, Gembitsky PA, Sutyagin VV (1997) Biocide additive. Patent RF # 2074234 [In Russian]

  • Lopes PTC, Gaylarde CC (1996) Use of immunofluorescence to detect Hormoconis resinae in aviation kerosine. Int Biodeterior Biodegrad 37:37–40

    Google Scholar 

  • Lopes Ferreira N Maciel H, Mathis H, Monot F, Fayolle-Guichard F, Greer CW (2006) Isolation and characterization of a new Mycobacterium austroafricanum strain, IFP 2015, growing on MTBE. Appl Microbiol Biotechnol 70(5):358–365

    Google Scholar 

  • Loren A, Hallbeck L, Pedersen K, Abrahamsson K (2001) Determination and distribution of diesel components in igneous rock surrounding underground diesel storage facilities in Sweden. Environ Sci Technol 35(2):374–378

    CAS  Google Scholar 

  • Maillard J-Y (2002) Bacterial target sites for biocide action. J Appl Microbiol Symp Suppl 92:6–27

    Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    CAS  Google Scholar 

  • Massey V (1994) Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem 269(36):22459–22462

    CAS  Google Scholar 

  • van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie van Leeuwenhoek 71:159–178

    Google Scholar 

  • Miroshnichenko ML, Hippe H., Stackebrandt E, Kostrikina NA, Chernyh NA, Jeanthon C, Nazina TN, Belyaev SS, Bonch-Osmolovskaya EA (2001) Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91

    CAS  Google Scholar 

  • Mishra S, Sarma PM, Lal B (2004) Crude oil degradation efficiency of a recombinant Acinetobacter baumannii strain and its survival in crude oil-contaminated soil microcosm. FEMS Microbiol Lett 235(2):323–331

    CAS  Google Scholar 

  • Morpeth FF (1994) Biocide composition and use. Patent # 281975

  • Murzaev NM (1964) About microbiological methods of serum removal from oils. Mikrobiologiia 33(6):1082–1091 [In Russian]

    Google Scholar 

  • Murygina VP, Markarova MY, Kalyuzhyi SV (2005) Application of biopreparation “Rhoder” for remediation of oil polluted polar marshy wetlands in Komi Republic. Environ Int 31(2):163–166

    CAS  Google Scholar 

  • Muthukumar N, Rajasekar A, Ponmariappan S, Mohanan S, Maruthamuthu S, Muralidharan S, Subramanian P, Palaniswamy N, Raghavan M (2003) Microbiologically influenced corrosion in petroleum product pipelines-a review. Indian J Exp Biol 41(9):1012–1022

    CAS  Google Scholar 

  • Myhr S, Lillebo BL, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58(3):400–408

    CAS  Google Scholar 

  • Nagornov SA, Romantsova SV, Kleymenov OA (2001) Polyfunctional additive to hydrocarbon fuel. Patent # 2165958 [In Russian]

  • Nakatsu CH, Wyndham RC (1993) Cloning and expression of the transposable chlorobenzoate 3,4 dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol. 59:3625–3633

    CAS  Google Scholar 

  • Nazina T.N., Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Inter J Syst. Evol Microbiol 51:433–446

    CAS  Google Scholar 

  • Neale M (2003) The biocidal products directive—industry concerns. Roy Soc Chem Pesticide outlook:71–73

  • Neidle EL, Hartnett C, Ornston LN (1989) Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol 171:5410–5421

    CAS  Google Scholar 

  • Neihof RA, Bailey CA (1978) Biocidal properties of anti-icing additives for aircraft fuels. Appl Environ Microbiol 35(4):698–703

    CAS  Google Scholar 

  • Norman RS, Frontera-Suau R, Morris PJ (2002) Variability in Pseudomonas aeruginosa lipopolysaccharide expression during crude oil degradation. Appl Environ Microbiol 68(10):5096–5103

    CAS  Google Scholar 

  • Novikov IA, Gurov BN, Shtuchnaia GV, Fomchenkov VM, Kholodenko VP (2001) Rapid assay for the assessment of a potential of chemical biocides to microbial destructors of industrial materials. Prikl Biokhim Mikrobiol 37(1):123–128 [In Russian]

    CAS  Google Scholar 

  • Odier E (1976) Microbial growth and fuel tanks hazards. Ann Microbiol (Paris) 127B(2):213–225 [In French]

    CAS  Google Scholar 

  • Olliver B, Magot M (2005) Petroleum microbiology. ASM Press, USA

    Google Scholar 

  • Ouyang Wei, Liu Hong V. Murygina, Yu Yongyong, Xiu Zengde, Kalyuzhnyi S. (2005) Comparison of bio-augmentation and composting for remediation of oily sludge: a field-scale study in China. Proc Biochem 40:3763–3768

    Google Scholar 

  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Yamane H, Omori T (2000) Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121

    CAS  Google Scholar 

  • Potter TL, Duval B (2001) Cerro Negro bitumen degradation by a consortium of marine benthic microorganisms. Environ Sci Technol 35(1):76–83

    CAS  Google Scholar 

  • Rabus R, Kube M, Beck A, ·Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516

    CAS  Google Scholar 

  • Rahman KS, Rahman T, Lakshmanaperumalsamy P, Banat IM (2002a) Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. J Basic Microbiol 42(4):284–291

    CAS  Google Scholar 

  • Rahman KS, Thahira-Rahman J, Lakshmanaperumalsamy P, Banat IM (2002b) Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresour Technol 85(3):257–261

    CAS  Google Scholar 

  • Robert V, Bonjean B, Karutz M, Paschold H, Peeters W, Wubbolts MG (2001) Candida bituminiphila, a novel anamorphic species of yeast. Int J Syst Evol Microbiol 51(Pt 6):2171–2176

    CAS  Google Scholar 

  • Roling WF, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154(5):321–328

    CAS  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Loveley DR (1999) Microbial communities associated with anaerobic benzene degradation in petroleum-contaminated aquifer. Appl Environ Microbiol 65 (7):3056–3063

    CAS  Google Scholar 

  • Rosenberg E, Legman R, Kushmaro A, Adler E, Abir H, Ron EZ (1996) Oil bioremediation using insoluble nitrogen source. J Biotechnol 51(3):273–278

    CAS  Google Scholar 

  • Rozanova EP (1971) Distribution of microflora in oil strata operated over long periods of time. Mikrobiologiia 40(2):363–369 [In Russian]

    CAS  Google Scholar 

  • Rozanova EP (1967) Usage of hydrocarbons by microorganisms. Uspehi mikrobiologii 4:61–69 [In Russian]

    CAS  Google Scholar 

  • Rossmoore HW, Wireman JW, Rossmoore LA, Riha VF (1988) Factors to consider in testing biocides for distillate fuels. In: Chesneau HL, Dorris MM (Eds), Distillate fuel: contamination, storage and handling PA: American Society for Testing and Materials, STP 1005, Philadelphia pp 95–104

    Google Scholar 

  • Rossmoore HW, Rossmoore LA (1977) Evaluation of source of bacterial inoculum in development of a cutting fluid test procedure. Lub Engin 33(7):372–377

    Google Scholar 

  • Rueter P, Rabus R, Wilkes H, Aeckersberg F, Rainey FA, Jannasch HW, Widdel F (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458

    CAS  Google Scholar 

  • Samanta SK, Chakraborti AK, Jain R K (1999) Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol 53:98–107

    CAS  Google Scholar 

  • Selvaraju SB, Khan IUH, Yadav JS (2005) Biocidal activity of formaldehyde and nonformaldehyde biocides toward Mycobacterium immunogenum and Pseudomonas fluorescens in pure and mixed suspensions in synthetic metalworking fluid and saline. Appl Environ Microbiol 71(1):542–546

    CAS  Google Scholar 

  • Sharma SL, Pant A (2000) Biodegradation and conversion of alkanes and crude oil by a marine Rhodococcus sp. Biodegradation 11:289–294

    CAS  Google Scholar 

  • Sirotkin OL, Perovskiy EV, Lyashenko AV (2005) Method of microbiological infection suppression of various sorts of fuels. Patent # 2249610 [In Russian]

  • So CMM, Young LY (1999) Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65:2969–2976

    CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60(1–2):212–217

    CAS  Google Scholar 

  • Stuart RA (1994–1995) Microbial attack on ships and their equipment. Paper No. 4 (pp. 1–41) Lloyd’s Register, Technical Association, London

    Google Scholar 

  • Tadashi F, Tatsuya N, Koji T, Junichi K (2004) Biotransformation of various alkanes using the Escherichia coli expressing an alkane hydroxylase system from Gordonia sp. TF6. Biosci Biotechnol Biochem 68(10):2171–2177

    Google Scholar 

  • Takahata Y, Nishijima M, Hoaki T, Maruyama T (2000) Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66(1):73–79

    Article  CAS  Google Scholar 

  • Tarasov AL, Borzenkov IA, Milekhina EI, Belyaev SS, Ivanov MV (2002) Dynamics of microbial processes in the stratal water of the Romashkinskoye oil deposit. Microbiologiya 71:849–857

    CAS  Google Scholar 

  • Thiel V, Peckmann J, Richnow HH, Luth U, Reitner J, Michaelis W (2001) Molecular signals for anaerobic methane oxidation in Black Sea seep carbonates and a microbial mat. Mar Chem 73(2):97–112

    CAS  Google Scholar 

  • Van Hamme JD, Singh A., Ward O.P. (2003) Recent advances in petroleum microbiology. Microbiol Molecular Biol Rev 67(4):503–549

    Google Scholar 

  • Vasu RP, Traxler RW, Sobek JM (1977) N-Alkane oxidation enzymes of a Pseudomonad. Appl Environ Microbiol 57(4):881–884

    Google Scholar 

  • Veillette M, Thorne PS, Gordon T, Duchaine C (2004) Six month tracking of microbial growth in a metalworking fluid after system cleaning and recharging. Ann Occup Hyg 48(6):541–546

    Google Scholar 

  • Vishnyakova TP, Vlasova ID, Grechyushkina NN, Krylov IF, Paushkin YaM, Litvinenko SN, Grigor’eva GP, Poddubnyi VN, Sankina NB, Tihonruk IF, Toropova YeG (1970) Biological contamination of oil and oil products and their protaction during transport and storage. Review. In: Vishnyakova TP (Ed) CNIITEneftehim, М [In Russian]

  • Waites MJ, Higton G, Morgan NL, Rockey JS (2001) Industrial microbiology. Blackwell Publishing Inc, USA

    Google Scholar 

  • Watanabe K, Kodama Yu, Kaku N (2002) Diversity and abundance of bacteria in an anderground oil-storage cavity. BMC Microbiol 2:23

    Google Scholar 

  • Wilhelms A, Larter SR, Head I, Farrimond P, di-Primio R, Zwach C (2001) Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411(6841):1034–1037

    CAS  Google Scholar 

  • Yang SS, Chen CY, Sung Y, Lin YT (1992) Effect of moisture content on the microbial activity in JP-5 fuel oil. Chinese J Microbiol Immunol 25(4):223–231

    CAS  Google Scholar 

  • Young LY, Phelps CD (2005) Metabolic biomarkers for monitoring in situ anaerobic hydrocarbon degradation. Environ Health Perspect 113(1):62–71

    Article  CAS  Google Scholar 

  • Zhigletsova SK, Rodin VB, Kobelev VS, Akimova NA, Aleksandrova NV, Rasulova GE, Mironova RI, Noskova VP, Kholodenko VP (2000) Increase in the ecological danger upon the use of biocides for fighting corrosion induced by microorganisms. Prikl Biokhim Mikrobiol 36(6):694–700 [In Russian]

    CAS  Google Scholar 

  • Zvyagintseva IS, Surovtseva EG, Poglazova MN, Ivoilov VS, Belyaev SS (2001) Degradation of Machine Oil by Nocardioform Bacteria. Microbiology 70(3):270–276(7)

    Google Scholar 

Download references

Acknowledgement

The financial support of International Science and Technology Centre (project No. 2937) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey V. Kalyuzhnyi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yemashova, N.A., Murygina, V.P., Zhukov, D.V. et al. Biodeterioration of crude oil and oil derived products: a review. Rev Environ Sci Biotechnol 6, 315–337 (2007). https://doi.org/10.1007/s11157-006-9118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-006-9118-8

Keywords

Navigation