Skip to main content

Advertisement

Log in

Anaerobic co-digestion of organic wastes

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Over the last years anaerobic digestion has been successfully established as technology to treat organic wastes. The perspective of turning, through a low-cost process, organic wastes into biogas, a source of renewable energy and profit, has certainly increased the interest around this technology and has required several studies aimed to develop methods that could improve the performance as well as the efficiency of this process. The present work reviews the most interesting results achieved through such studies, mainly focusing on the following three aspects: (1) the analysis of the organic substrates typically co-digested to exploit their complementary characteristics; (2) the need of pre-treating the substrates before their digestion in order to change their physical and/or chemical characteristics; (3) the usefulness of mathematical models simulating the anaerobic co-digestion process. In particular these studies have demonstrated that combining different organic wastes results in a substrate better balanced and assorted in terms of nutrients, pre-treatments make organic solids more accessible and degradable to microorganisms, whereas mathematical models are extremely useful to predict the co-digestion process performance and therefore can be successfully used to choose the best substrates to mix as well as the most suitable pre-treatments to be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahring BK, Munck J (2005) Method for treating biomass and organic waste with the purpose of generating desired biologically based products. Patent No. WO. 2006-032282 A1

  • Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: effect of ammonia. Appl Microbiol Biotechnol 38:560–564

    Article  CAS  Google Scholar 

  • Angelidaki I, Ellegaard L, Ahring BK (1999) A comprehensive model of anaerobic bioconversion of complex substrates to biogas. Biotechnol Bioeng 63:363–372

    Article  CAS  Google Scholar 

  • Barton JR, Issaias I, Stentiford EI (2008) Carbon-making the right choice for waste management in developing countries. Waste Manage 28:69–76

    Article  Google Scholar 

  • Batstone DJ, Keller J (2003) Industrial applications of the IWA anaerobic digestion model no. 1 (ADM1). Water Sci Technol 47:199–206

    CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SV, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1. Rep. No. 13. IWA Publishing, London

  • Bekkering J, Broekhuis AA, van Gemert WJT (2010) Optimisation of a green supply chain-a review. Bioresour Technol 101:450–456

    Article  CAS  Google Scholar 

  • Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA anaerobic digestion model no. 1 (ADM1). Water Res 39:171–183

    Article  CAS  Google Scholar 

  • Bouallagui H, Lahdheb H, Ben Romdan E, Rachdi B, Hamdi M (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J Environ Manage 90:1844–1849

    Article  CAS  Google Scholar 

  • Bougrier C, Delgenes JP, Carrere H (2007) Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J 34:20–27

    Article  CAS  Google Scholar 

  • Bozinis NA, Alexiou IE, Pistikopoulos EN (1996) A mathematical model for the optimal design and operation of an anaerobic co-digestion plant. Water Sci Technol 34:383–391

    CAS  Google Scholar 

  • Buendía IM, Fernández FJ, Villaseñor J, Rodríguez L (2009) Feasibility of anaerobic co-digestion as a treatment option of meat industry wastes. Bioresour Technol 100:1903–1909

    Article  Google Scholar 

  • Callaghan FJ, Wase DAJ, Thayanity K, Forster CF (2002) Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenergy 22:71–77

    Article  CAS  Google Scholar 

  • Cecchi F, Traverso PG, Perin G, Vallini G (1988) Comparison of co-digestion performance of two differently collected organic fractions of municipal solid wastes with sewage sludges. Environ Technol Lett 9:391–400

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Converti A, Drago F, Ghiazza G, Borghi M, Macchiavello A (1997) Co-digestion of municipal sewage sludges and prehydrolised woody agricultural wastes. J Chem Technol Biotechnol 69:231–239

    Article  CAS  Google Scholar 

  • Cuetos MJ, Gómez X, Otero M, Morán A (2010) Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield. Waste Manage 30:1780–1789

    Article  CAS  Google Scholar 

  • De Lucas A, Rodríguez L, Villaseñor J, Fernández FJ (2007) Fermentation of agro food wastewaters by activated sludge. Water Res 41:1635–1644

    Article  Google Scholar 

  • Del Borghi A, Converti A, Palazzi E, Del Borghi M (1999) Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioproc Biosyst Eng 20:553–560

    Google Scholar 

  • Derbal K, Bencheikh-Lehocine M, Cecchi F, Meniai AH, Pavan P (2009) Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition. Bioresour Technol 100:1539–1543

    Article  CAS  Google Scholar 

  • Dinsdale RM, Premier GC, Hawkes FR, Hawkes DL (2000) Two-stage anaerobic co-digestion of waste activated sludge and fruit/vegetable waste using inclined tubular digesters. Bioresour Technol 72:159–168

    Article  CAS  Google Scholar 

  • Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control Fed 53:352–366

    CAS  Google Scholar 

  • Edström M, Nordberg A, Thyselius L (2003) Anaerobic treatment of animal by products from slaughterhouses at laboratory and pilot scale. Appl Biochem Biotechnol 109:127–138

    Article  Google Scholar 

  • Egg RP, Coble CG, Engler CR, Lewis DH (1993) Feedstock storage, handling and processing. Biomass Bioenergy 5:71–94

    Article  CAS  Google Scholar 

  • Esposito G, Frunzo L, Panico A, d’Antonio G (2008) Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge. Water Sci Technol 58:1513–1519

    Article  CAS  Google Scholar 

  • Esposito G, Frunzo L, Panico A, Pirozzi F (2011a) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46:557–565

    Article  CAS  Google Scholar 

  • Esposito G, Frunzo L, Panico A, Pirozzi F (2011b) Model calibration and validation for OFMSW and sewage sludge co-digestion reactors. Waste Manage 31:2527–2535

    Article  CAS  Google Scholar 

  • Esposito G, Frunzo L, Liotta F, Panico A, Pirozzi F (2012) BMP tests to measure the biogas production from the digestion and co-digestion of Complex organic substrates. Open J Environ Eng 5:1–8

    Article  CAS  Google Scholar 

  • Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with process of sulphate reduction. Appl Biochem Biotech 109:33–45

    Article  CAS  Google Scholar 

  • Fernández A, Sánchez A, Font X (2005) Anaerobic a co-digestion of simulated organic fraction of municipal solid wastes and fats of animal and vegetable origin. Biochem Eng J 26:22–28

    Article  Google Scholar 

  • Fezzani B, Cheikh RB (2009) Extension of the anaerobic digestion model no. 1 (ADM1) to include phenolic compounds biodegradation processes for simulating of anaerobic co-digestion of olive mill wastes at mesophilic temperature. J Hazard Mater 162:1563–1570

    Article  CAS  Google Scholar 

  • Fischer JR, Iannotti EL, Fulhage CD (1983) Production of methane gas from combinations of wheat straw and swine manure. T ASAE 26:546–548

    CAS  Google Scholar 

  • Fox MH, Noike T, Ohki T (2003) Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci Technol 48(4):77–84

    CAS  Google Scholar 

  • Frigon JC, Mehta P, Guiot SR (2008) Bioenergy potential of pretreated crops by anaerobic digestion. In: Conference ‘‘Growing the margins’’, London (Ont), Canada

  • Fuentes M, Scenna NJ, Aguirre PA, Mussati MC (2008) Application of two anaerobic digestion models to biofilm systems. Biochem Eng J 38:259–269

    Article  CAS  Google Scholar 

  • Fujita M, Scharer JM, Moo-Young M (1980) Effect of corn stover addition on the anaerobic digestion of swine manure. Agric Wastes 2:177–184

    Article  Google Scholar 

  • Galí A, Benabdallah T, Astals S, Mata-Alvarez J (2009) Modified version of ADM1 model for agro-waste application. Bioresour Technol 100:2783–2790

    Article  Google Scholar 

  • Gavala HN, Skiadas IV, Bozinis NA, Lyberatos G (1996) Anaerobic codigestion of agricultural industries’ wastewaters. Water Sci Technol 34:67–75

    CAS  Google Scholar 

  • Ghosh S (1991) Pilot-scale demonstration of two-phase anaerobic digestion of activated-sludge. Water Sci Technol 23:1179–1188

    CAS  Google Scholar 

  • Hamzawi N, Kennedy KJ, Mc Lean DD (1998a) Technical feasibility of anaerobic co-digestion of sewage sludge and municipal solid waste. Environ Technol 19:993–1003

    Article  CAS  Google Scholar 

  • Hamzawi N, Kennedy KJ, Mclean DD (1998b) Anaerobic digestion of co-mingled municipal solid-waste and sewage sludge. Water Sci Technol 38:127–132

    CAS  Google Scholar 

  • Hashimoto AG (1983) Conversion of straw–manure mixtures to methane at mesophilic and thermophilic temperatures. Biotechnol Bioeng 25:185–200

    Article  CAS  Google Scholar 

  • Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17:241–261

    Article  CAS  Google Scholar 

  • Hawkes DL (1980) Factors affecting net energy production from mesophilic anaerobic digestion. In: Stratford DA, Wheatley BI, Hughes DE (eds) Anaerobic digestion, pp 131–150

  • Heo NH, Park SC, Lee JS, Kang H (2003) Solubilization of waste activated sludge by alkaline pretreatment and biochemical methane potential (BMP) tests for anaerobic co-digestion of municipal organic waste. Water Sci Technol 48:211–219

    CAS  Google Scholar 

  • Hills DJ (1980) Biogas from a high solids combination of dairy manure and barley straw. T ASABE 23:1500–1504

    CAS  Google Scholar 

  • Hills DJ, Roberts DW (1981) Anaerobic digestion of dairy manure and field crops residues. Agric Wastes 3:179–189

    Article  CAS  Google Scholar 

  • Jeyaseelan S (1997) A simple mathematical model for anaerobic digestion process. Water Sci Technol 35:185–191

    CAS  Google Scholar 

  • Kacprzac A, Krystek L, Ledakowicz S (2010) Co-digestion of agricultural and industrial wastes. Chem Pap 64:127–131

    Article  Google Scholar 

  • Kaparaju P, Luostarinen S, Kalmari E, Kalmari J, Rintala JA (2002) Co-digestion of energy crops and industrial confectionery by-products with cow manure: batch scale and farm-scale evaluation. Water Sci Technol 45:275–280

    CAS  Google Scholar 

  • Kiely G, Tayfur G, Dolan C, Tanji K (1997) Physical and mathematical modelling of anaerobic digestion of organic wastes. Water Res 31:534–540

    Article  CAS  Google Scholar 

  • Kübler H, Hoppenheidt K, Hirsch P, Kottmair A, Nimmritcher R, Nordsleck H, Mucke W, Swerev M (2000) Full-scale co-digestion of organic waste. Water Sci Technol 41:195–202

    Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264

    Article  CAS  Google Scholar 

  • Lehtomäki A, Viinikainen TA, Ronkainen OM, Alen R., Rintala JA (2004) Effect of pretreatments on methane production potential of energy crops and crop residues. In: Guiot SG, Pavlostathis S, van Lier JB (eds) Proceedings of the 10th world IWA congress on anerobic digestion. IWA Publishing, London, pp 1016–1021

  • Lehtomäki A, Huttunen S, Rintala JA (2007) Laboratory investigation on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio. Resour Conserv Recycl 51:591–609

    Article  Google Scholar 

  • Lema JM, Omil F (2001) Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Sci Technol 44:133–140

    CAS  Google Scholar 

  • Lettinga G (2001) Digestion and degradation, air for life. Water Sci Technol 44:157–176

    CAS  Google Scholar 

  • Li YY, Sasaki H, Yamashita K, Seki K, Kamigochi I (2002) High-rate methane fermentation of lipid-rich food wastes by a high-solids co-digestion process. Water Sci Technol 45:143–150

    CAS  Google Scholar 

  • Li X, Li L, Zheng M, Fu G, Lar JS (2009) Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuel 23:4635–4639

    Article  CAS  Google Scholar 

  • Lissens G, Thomsen AB, De Baere L, Verstraete W, Ahring BK (2004a) Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste. Environ Sci Technol 38:3418–3424

    Article  CAS  Google Scholar 

  • Lissens G, Verstraete W, Albrecht T, Brunner G, Creuly C, Seon J, Dussap G, Lasseur C (2004b) Advanced anaerobic bioconversion of lignocellulosic waste for bioregenerative life support following thermal water treatment and biodegradation by Fibrobacter succinogenes. Biodegradation 15:173–183

    Article  CAS  Google Scholar 

  • Lübken M, Wichern M, Bischof F, Prechtl S, Horn H (2007) Development of an empirical mathematical model for describing and optimizing the hygiene potential of a thermophilic anaerobic bioreactor treating faeces. Water Sci Technol 55:95–102

    Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P (2000) Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour Technol 74:3–16

    Article  CAS  Google Scholar 

  • Mata-Alvarez J, Mace S, Llabres P, Astlas S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111

    Article  CAS  Google Scholar 

  • Møller HB, Hartmann H, Ahring BK (2004) Manure separation as a pre- treatment method to increase gas production in biogas plants. Ramiran. In: 11th international conference of the FAO ESCORENA network on recycling of agricultural, municipal and industrial residues in agriculture

  • Mouneimne AH, Carrere H, Bernet N, Delgenes JP (2003) Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresour Technol 90:89–94

    Article  CAS  Google Scholar 

  • Neves L, Oliveira R, Alves MM (2009) Co-digestion of cow manure, food waste and intermittent input of fat. Bioresour Technol 100:1957–1962

    Article  CAS  Google Scholar 

  • Nielsen HB, Angelidaki I (2008) Strategies for optimizing recovery of the biogas process following ammonia inhibition. Bioresour Technol 99:7995–8001

    Article  CAS  Google Scholar 

  • Noike T, Endo G, Chang JE, Yaguchi JI, Matsumoto JI (1985) Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng 27:1482–1489

    Article  CAS  Google Scholar 

  • Paavola T, Syvasalo E, Rintala J (2006) Co-digestion of manure and biowaste according to the EC animal by-products regulation and Finnish national regulations. Water Sci Technol 53:223–231

    Article  CAS  Google Scholar 

  • Pakarinen O, Lehtomaki A, Rintala J (2008) Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. Int J Hydrogen Energy 33:594–601

    Article  CAS  Google Scholar 

  • Palmowski L, Müller J (1999) Influence of the size reduction of organic waste on their anaerobic digestion. In: Mata-Alvarez J, Cecchi, F, Tilche, A (eds) Proceedings of the 2nd international symposium on anaerobic digestion of solid waste. IWA Publishing, London, pp 137–144

  • Pohland F (1996) Landfill bioreactors: fundamentals and practice. Water Qual Int 9:18–22

    Google Scholar 

  • Ponsá S, Gea T, Sánchez A (2011) Anaerobic co-digestion of the organic fraction of municipal solid waste with several pure organic co-substrates. Biosyst Eng 108:352–360

    Article  Google Scholar 

  • Qiao W, Chong P, Wei W, Zhong ZZ (2011) Biogas production from supernatant of hydrothermally treated municipal sludge by upflow anaerobic sludge blanket reactor. Bioresour Technol 102:9904–9911

    Article  CAS  Google Scholar 

  • Rehl T, Müller J (2011) Life cycle assessment of biogas digestate processing technologies. Resour Conserv Recycl 56:92–104

    Article  Google Scholar 

  • Rintala J, Ahring BK (1994) A two-stage thermophilic anaerobic process for the treatment of source sorted household solid waste. Biotechnol Lett 16:1097–1102

    Article  CAS  Google Scholar 

  • Rodríguez L, Villaseñor J, Fernández FJ, Buendía IM (2007) Anaerobic co-digestion of winery wastewater. Water Sci Technol 56:49–54

    Google Scholar 

  • Siegert I, Banks C (2005) The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40:3412–3418

    Article  CAS  Google Scholar 

  • Simonetti M, Rossi G, Cabbai V, Goi D (2010) Experimental tests of ultrasonic pretreatment on organic fractions for anaerobic co-digestion. In: Proceedings of Venice 2010 third international symposium on energy from biomass and waste, 8th–10th November 2010, Venice, Italy

  • Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7:609–616

    Article  CAS  Google Scholar 

  • Sosnowski P, Klepacz-Smolka A, Kaczorek K, Ledakowicz S (2008) Kinetic investigations of methane co-fermentation of sewage sludge and organic fraction of municipal solid wastes. Bioresour Technol 99:5731–5737

    Article  CAS  Google Scholar 

  • Spanjers H, Vanrolleghem P (1995) Respirometry as a tool for rapid characterization of wastewater and activated sludge. Water Sci Technol 31:105–114

    CAS  Google Scholar 

  • Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour Technol 100:3140–3142

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Theisen H, Vigil S (1993) Integrated solid waste management. McGraw-Hill Inc, New York

    Google Scholar 

  • Tosun I, Gonullu MT, Arslankaya E, Gunay A (2008) Cocomposting kinetics of rose processing waste with OFMSW. Bioresour Technol 99:6143–6149

    Article  CAS  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2007) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manage 28:939–951

    Article  Google Scholar 

  • Wang G (2009) Biogas production from energy crops and agriculture residues. Dissertation, Technical University of Denmark

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimization of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • Weiland P, Hassan E (2001) Production of biogas from forage beets. In: van Velsen AFM, Vestraete WH (eds) Proceedings of 9th world congress on anaerobic digestion, pp 631–633

  • Woodard KR, Prine GM, Bates DB, Chynoweth DP (1991) Preserving elephantgrass and energycane biomass as silage for energy. Bioresour Technol 36:253–259

    Article  Google Scholar 

  • Wu X, Yao W, Zhu J, Miller C (2010) Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source. Bioresour Technol 101:4042–4047

    Article  CAS  Google Scholar 

  • Zaher U, Li R, Jeppsson U, Steyer JP, Chen S (2009) GISCOD: general integrated solid waste co-digestion model. Water Res 43:2717–2727

    Article  CAS  Google Scholar 

  • Zhang P, Zeng G, Zhang G, Li Y, Zhang B, Fan M (2008) Anaerobic co-digestion of biosolids and organic fraction of municipal solid waste by sequencing batch process. Fuel Process Technol 89:485–489

    Article  CAS  Google Scholar 

  • Zitomer DH, Adhikari P, Heisel C, Dineen D (2008) Municipal anaerobic digesters for co-digestion, energy recovery, and greenhouse gas reductions. Water Environ Res 80:229–237

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Italian Ministry of the Research and University in the framework of the National Research Project Advanced Treatments for Organic Waste Reuse and Energy Recovery funded in 2006 and the Research Project Energy Saving with Valorisation of the Secondary Energy Sources as Distributed Energy Sources funded in 2007. This research is also in the framework of the Project: Integrated system to treat buffalo slurry, aimed to recover water and safe energySTABULUM-, funded, in agreement with the Decision of the European Commission No C(2010) 1261, 2nd March 2010, by the Agriculture Department of the Campania Region in the context of the Programme of Rural Development 2007–2013, Measure 124 “ Cooperation for development of new products, processes and technologies in the agriculture and food sectors. Flavia Liotta is a doctoral research fellow of the Erasmus Mundus Joint Doctorate program ETeCoS3 (Environmental Technologies for Contaminated Solids, Soils and Sediments) under the EU grant agreement FPA n° 2010-0009. This research was supported by the company Acqua e Sole s.r.l. as an associate member of the ETeCoS3 consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Panico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, G., Frunzo, L., Giordano, A. et al. Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol 11, 325–341 (2012). https://doi.org/10.1007/s11157-012-9277-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-012-9277-8

Keywords

Navigation