Skip to main content

Advertisement

Log in

Methods of energy extraction from microalgal biomass: a review

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

The potential of algal biomass as a source of liquid and gaseous biofuels is a highly topical theme, The process operations for algal biofuel production can be grouped into three areas: growth, harvesting and energy extraction, with a wide range of combinations of unit operations that can form a microalgal biofuel production system, but as yet there is no successful economically viable commercial system producing biofuel. This suggests that there are major technical and engineering difficulties to be resolved before economic algal biofuel production can be achieved. This article briefly reviews the methods by which useful energy may be extracted from microalgae biomass: (a) direct combustion, (b) pyrolysis, (c) gasification, (d) liquefaction, (e) hydrogen production by biochemical processes in certain algae, (f) fuel cells, (g) fermentation to bioethanol, (h) trans-esterification to biodiesel, (i) anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Afi L, Metzger P, Largeau C, Connan J, Berkaloff C, Rousseau B (1996) Bacterial degradation of green microalgae: incubation of Chlorella emersonii and Chlorella vulgaris with Pseudomonas oleovorans and Flavobacterium aquatile. Org Geochem 25(1–2):117–130. doi:10.1016/s0146-6380(96)00113-1

    CAS  Google Scholar 

  • Alba LG, Torri C, Samori C, van der Spek J, Fabbri D, Kersten SRA, Brilman DWF (2012) Hydrothermal treatment of microalgae: evaluation of the process as conversion method in an algae biorefinery concept. Energy Fuels 26(1):642–657. doi:10.1021/ef201415s

    Google Scholar 

  • Babich IV, van der Hulst M, Lefferts L, Moulijn JA, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35(7):3199–3207. doi:10.1016/j.biombioe.2011.04.043

    CAS  Google Scholar 

  • Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sustain Energy Rev 27:128–148. doi:10.1016/j.rser.2013.06.029

    CAS  Google Scholar 

  • Bain R (2004) An introduction to biomass thermochemical conversion. Paper presented at the DOE/NASLUGC biomass and solar energy workshops, Golden, Colorado

  • Balat M, Balat H, Oz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573. doi:10.1016/j.pecs.2007.11.001

    CAS  Google Scholar 

  • Beal CM (2011) Algal biofuels: energy and water. Paper presented at the WEG Symposium, Austin Texas 21-22/01/2011

  • Belosevic S (2010) Modeling approaches to predict biomass co-firing with pulverized coal. Open Thermodyn J 4:50–70

    CAS  Google Scholar 

  • Ben-Amotz A, Polle JEW, Subba Rao DV (2009) The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfleld, NJ

    Google Scholar 

  • Benemann JR (2000) Hydrogen production by microalgae. J Appl Phycol 12(3):291–300. doi:10.1023/a:1008175112704

    CAS  Google Scholar 

  • Bhola V, Desikan R, Santosh SK, Subburamu K, Sanniyasi E, Bux F (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J Biosci Bioeng 111(3):377–382. doi:10.1016/j.jbiosc.2010.11.006

    CAS  Google Scholar 

  • Björkman E, Strömberg B (1997) Release of chlorine from biomass at pyrolysis and gasification conditions. Energy Fuels 11(5):1026–1032

    Google Scholar 

  • Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Lee JW (ed) Advanced biofuels and bioproducts. Springer, New York, pp 873–975. doi:10.1007/978-1-4614-3348-4_36

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009

    CAS  Google Scholar 

  • Brown P (2009) Algal biofuels research, development, and commercialization priorities: a commercial economics perspective. ep Overviews Publishing, Inc. http://www.epoverviews.com/oca/Algae%20Biofuel%20Development%20Priorities%20.pdf. Accessed 11/12/2008

  • Brown MR, Jeffrey SW (1995) The amino acid and gross composition of marine diatoms potentially useful for mariculture. J Appl Phycol 7(6):521–527. doi:10.1007/bf00003938

    CAS  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuels 24(6):3639–3646. doi:10.1021/ef100203u

    CAS  Google Scholar 

  • Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44(3):550–552. doi:10.1021/ie50507a033

    CAS  Google Scholar 

  • Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122. doi:10.1021/ie9008293

    CAS  Google Scholar 

  • Chen WH, Han SK, Sung S (2003) Sodium inhibition of thermophilic methanogens. J Environ Eng ASCE 129(6):506–512. doi:10.1061/(asce)0733-9372(2003)129:6(506)

    CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. doi:10.1016/j.biortech.2007.01.057

    CAS  Google Scholar 

  • Cherubini F (2010) The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Conv Manag 51(7):1412–1421. doi:10.1016/j.enconman.2010.01.015

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Chisti Y, Moo Young M (1986) Disruption of microbial-cells for intracellular products. Enzyme Microb Technol 8(4):194–204

    CAS  Google Scholar 

  • Choi SP, Nguyen MT, Sim SJ (2010) Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production. Bioresour Technol 101(14):5330–5336. doi:10.1016/j.biortech.2010.02.026

    CAS  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol:null–null. doi:10.1021/es200760n

  • de Boer K, Moheimani N, Borowitzka M, Bahri P (2012) Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J Appl Phycol 24(6):1681–1698. doi:10.1007/s10811-012-9835-z

    CAS  Google Scholar 

  • De Schamphelaire L, Verstraete W (2009) Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol Bioeng 103(2):296–304. doi:10.1002/bit.22257

    Google Scholar 

  • Delrue F, Seiter PA, Sahut C, Cournac L, Roubaud A, Peltier G, Froment AK (2012) An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour Technol 111:191–200. doi:10.1016/j.biortech.2012.02.020

    CAS  Google Scholar 

  • Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42(11):1357–1378. doi:10.1016/s0196-8904(00)00137-0

    CAS  Google Scholar 

  • Demirbas A (2010) Hydrogen from mosses and algae via pyrolysis and steam gasification. Energy Sources Part A Recovery Util Environ Eff 32(2):172–179. doi:10.1080/15567030802464388

    CAS  Google Scholar 

  • Doucha J, Lívanský K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21(1):111–117. doi:10.1007/s10811-008-9336-2

    CAS  Google Scholar 

  • Du ZY, Li YC, Wang XQ, Wan YQ, Chen Q, Wang CG, Lin XY, Liu YH, Chen P, Ruan R (2011) Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol 102(7):4890–4896. doi:10.1016/j.biortech.2011.01.055

    CAS  Google Scholar 

  • El-Dessouky HT, Ettouney HM (2002) Fundamentals of salt water desalination. Elsevier, New York

    Google Scholar 

  • GEA Process Engineering (2011) Algal cell disruption. http://www.niroinc.com/gea_liquid_processing/algae_cells_disruption.asp. Accessed 20/09/2011

  • Ferrell J, Sarisky-Reed V (2010) National algal biofuels technology roadmap. A technology roadmap resulting from the National Algal Biofuels Workshop U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Available online @ http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf, Washington

  • Geun Goo B, Baek G, Jin Choi D, Il Park Y, Synytsya A, Bleha R, Ho Seong D, Lee C-G, Kweon Park J (2013) Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour Technol 129:343–350. doi:10.1016/j.biortech.2012.11.077

    Google Scholar 

  • Ghasemi Y, Rasoul-Amini S, Naseri AT, Montazeri-Najafabady N, Mobasher MA, Dabbagh F (2012) Microalgae biofuel potentials (review). Appl Biochem Microbiol 48(2):126–144. doi:10.1134/s0003683812020068

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Appl Microbiol 7(4):219–227

    CAS  Google Scholar 

  • Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55

    CAS  Google Scholar 

  • Gonzalez-Delgado AD, Kafarov V (2011) Microalgae based biorefinery: issues to consider. CT F Cienc Tecnol Futuro 4(4):5–21

    CAS  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012a) Impact of microalgae characteristics on their conversion to biofuel. Part II: Focus on biomethane production. Biofuels Bioprod Biorefin 6(2):205–218. doi:10.1002/bbb.337

    CAS  Google Scholar 

  • Gonzalez-Fernandez C, Sialve B, Bernet N, Steyer JP (2012b) Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40:105–111. doi:10.1016/j.biombioe.2012.02.008

    CAS  Google Scholar 

  • Gouveia L (2011) Microalgae as a feedstock for biofuels. Springer, Heidelberg

    Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322

    CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174(3):246–263. doi:10.1016/j.plantsci.2007.11.009

    CAS  Google Scholar 

  • Guan QQ, Savage PE, Wei CH (2012a) Gasification of alga Nannochloropsis sp in supercritical water. J Supercrit Fluids 61:139–145. doi:10.1016/j.supflu.2011.09.007

    CAS  Google Scholar 

  • Guan QQ, Wei CH, Savage PE (2012b) Kinetic model for supercritical water gasification of algae. Phys Chem Chem Phys 14(9):3140–3147. doi:10.1039/c2cp23792j

    CAS  Google Scholar 

  • Gunnison D, Alexander M (1975) Resistance and susceptibility of algae to decomposition by natural microbial communities. Limnol Oceanogr 20(1):64–70

    Google Scholar 

  • Hall CAS, Klitgaard KA (2012) Energy and the wealth of nations: understanding the biophysical economy. Springer, New York

  • Hall C, Balogh S, Murphy D (2009) What is the minimum EROI that a sustainable society must have? Energies 2(1):25–47

    Google Scholar 

  • Hannon M, Gimpel J, Tran M, Rasala B, Mayfield S (2010) Biofuels from algae: challenges and potential. Biofuels 1(5):763–784

    CAS  Google Scholar 

  • Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168(3):1079–1084. doi:10.1016/j.cej.2011.01.088

    CAS  Google Scholar 

  • Harun R, Danquah MK, Forde GM (2010) Microalgal biomass as a fermentation feedstock for bioethanol production. J Chem Technol Biotechnol 85(2):199–203

    CAS  Google Scholar 

  • Harun R, Davidson M, Doyle M, Gopiraj R, Danquah M, Forde G (2011a) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 35(1):741–747. doi:10.1016/j.biombioe.2010.10.007

    CAS  Google Scholar 

  • Harun R, Jason WSY, Cherrington T, Danquah MK (2011b) Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Appl Energy 88(10):3464–3467. doi:10.1016/j.apenergy.2010.10.048

    CAS  Google Scholar 

  • Harvey PJ, Psycha M, Kokossis A, Abubakar AL, Trivedi V, Swamy R, Cowan AK, Schroeder D, Highfield A, Reinhardt G, Gartner S, McNeil J, Day P, Brocken M, Varrie J, Ben-Amotz A (2012) Glycerol production by halophytic microalgae: strategy for producing industrial quantities in saline water. Paper presented at the 20th European biomass conference and exhibition

  • Healey FP (1970) Hydrogen evolution by several algae. Planta 91(3):220. doi:10.1007/bf00385481

    CAS  Google Scholar 

  • Heaven S, Milledge J, Zhang Y (2011) Comments on ‘Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29(1):164–167. doi:10.1016/j.biotechadv.2010.10.005

    CAS  Google Scholar 

  • Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34(6):875–882. doi:10.1016/j.biombioe.2010.01.032

    CAS  Google Scholar 

  • Hidalgo P, Toro C, Ciudad G, Navia R (2013) Advances in direct transesterification of microalgal biomass for biodiesel production. Rev Environ Sci Biotechnol:1–21. doi:10.1007/s11157-013-9308-0

  • Hierholtzer A, Akunna JC (2012) Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol 66(7):1565–1573. doi:10.2166/wst.2012.345

    CAS  Google Scholar 

  • Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45(1–4):399–404. doi:10.1016/s0920-5861(98)00275-2

    CAS  Google Scholar 

  • Howe C (2012) Direct electricity generation from microalgae using biophotovoltaics. Paper presented at the Algal biotechnology; biofuels and beyond, UCL, London

  • Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb Technol 27(8):631–635

    CAS  Google Scholar 

  • Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuels 25(11):5472–5482. doi:10.1021/ef201373m

    CAS  Google Scholar 

  • Jonker JGG, Faaij APC (2013) Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl Energy 102(0):461–475. doi:10.1016/j.apenergy.2012.07.053

  • Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10):905–922. doi:10.1016/s0360-5442(02)00025-7

    CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. ChemInform 44(22):3358–3393. doi:10.1002/chin.200536238

    CAS  Google Scholar 

  • Knothe G, Van Gerpen J, Krahl J (eds) (2005) The biodiesel handbook. AOCS, Champaign, IL

    Google Scholar 

  • Kruse O, Hankamer B (2010) Microalgal hydrogen production. Curr Opin Biotechnol 21(3):238–243. doi:10.1016/j.copbio.2010.03.012

    CAS  Google Scholar 

  • Kruse O, Rupprecht J, Mussgnug JR, Dismukes GC, Hankamer B (2005) Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem Photobiol Sci 4(12):957–970. doi:10.1039/b506923h

    CAS  Google Scholar 

  • Lam SS, Chase HA (2012) A review on waste to energy processes using microwave pyrolysis. Energies 5(10):4209–4232. doi:10.3390/en5104209

    CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Stayer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j

    CAS  Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among bio-fuels. Bioresour Technol 102(1):43–49. doi:10.1016/j.biortech.2010.06.034

    CAS  Google Scholar 

  • Lefebvre O, Moletta R (2006) Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res 40(20):3671–3682. doi:10.1016/j.watres.2006.08.027

    CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29(2):173–185. doi:10.1016/s0360-3199(03)00094-6

    CAS  Google Scholar 

  • Liu X, Clarens AF, Colosi LM (2011) Meta-model of algae bio energy life cycles (MABEL). Paper presented at the LCA XI conference, Chicago, 06/10/2011

  • Liu J, Mukherjee J, Hawkes JJ, Wilkinson SJ (2013) Optimization of lipid production for algal biodiesel in nitrogen stressed cells of Dunaliella salina using FTIR analysis. J Chem Technol Biotechnol:n/a-n/a. doi:10.1002/jctb.4027

  • Ljunggren M (2011) Biological production of hydrogen and methane. Process evaluation and design through modeling. Lund University

  • Maddi B, Viamajala S, Varanasi S (2011) Comparative study of pyrolysis of algal biomass from natural lake blooms with lignocellulosic biomass. Bioresour Technol 102(23):11018–11026. doi:10.1016/j.biortech.2011.09.055

    CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232. doi:10.1016/j.rser.2009.07.020

    CAS  Google Scholar 

  • Mayhew YR, Rogers GFC (1972) Thermodynamic and transport properties of fluids. Blackwell, Oxford

    Google Scholar 

  • McGhee JE, Stjulian G, Detroy RW (1982) Continuous and static fermentation of glucose to ethanol by immobilized Saccharomyces cerevisiae cells of different ages. Appl Environ Microbiol 44(1):19–22

    CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83(1):47–54. doi:10.1016/s0960-8524(01)00119-5

    CAS  Google Scholar 

  • McKinlay JB, Harwood CS (2010) Photobiological production of hydrogen gas as a biofuel. Curr Opin Biotechnol 21(3):244–251. doi:10.1016/j.copbio.2010.02.012

    CAS  Google Scholar 

  • Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110(1):85–93. doi:10.1016/j.biotec.2004.01.013

    CAS  Google Scholar 

  • Miao XL, Wu QY, Yang CY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71(2):855–863. doi:10.1016/j.jaap.2003.11.004

    CAS  Google Scholar 

  • Miles TR, Miles TR Jr, Baxter LL, Bryers RW, Jenkins BM, Oden LL (1996) Boiler deposits from firing biomass fuels. Biomass Bioenergy 10(2):125–138

    CAS  Google Scholar 

  • Milledge JJ (2010a) The challenge of algal fuel: economic processing of the entire algal biomass. Condens Matter Mater Eng Newsl 1(6):4–6

    Google Scholar 

  • Milledge JJ (2010b) The potential yield of microalgal oil. Biofuels Int 4(2):44–45

    Google Scholar 

  • Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10(1):31–41. doi:10.1007/s11157-010-9214-7

    Google Scholar 

  • Milledge JJ (2012) Microalgae—commercial potential for fuel, food and feed. Food Sci Technol 26(1):26–28

    Google Scholar 

  • Milledge JJ (2013a) Energy balance and techno-economic assessment of algal biofuel production systems. PhD, University of Southampton

  • Milledge JJ (2013b) Micro-algal biorefineries. Paper presented at the towards establishing value chains for bioenergy, Swakopmund, Namibia, 29, 30 April

  • Milledge JJ, Heaven S (2011) Disc stack centrifugation separation and cell disruption of microalgae: a technical note. Environ Nat Resour Res 1(1):17–24. doi:10.5539/enrr.v1n1p17

    Google Scholar 

  • Milledge JJ, Heaven S (2013) A review of the harvesting of micro-algae for biofuel production. Rev Environ Sci Biotechnol 12(2):165–178. doi:10.1007/s11157-012-9301-z

    Google Scholar 

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78(10):1213–1215. doi:10.1016/s0016-2361(99)00047-2

    CAS  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738. doi:10.1016/0016-2361(95)80001-x

    CAS  Google Scholar 

  • Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalga for bioethanol production. Bioresour Technol 104:342–348. doi:10.1016/j.biortech.2011.10.059

    CAS  Google Scholar 

  • Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4(2):103–116. doi:10.1016/0961-9534(93)90032-y

    CAS  Google Scholar 

  • Moheimani NR (2005) The culture of coccolithophorid algae for carbon dioxide bioremediation. Murdoch University

  • Moheimani N, Borowitzka M (2006) The long-term culture of the coccolithophore and Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18(6):703–712. doi:10.1007/s10811-006-9075-1

    Google Scholar 

  • Mulder K, Hagens NJ (2008) Energy return on investment: toward a consistent framework. AMBIO 37(2):74–79. doi:10.1579/0044-7447(2008)37[74:eroita]2.0.co;2

    Google Scholar 

  • Murphy F, Devlin G, Deverell R, McDonnell K (2013) Biofuel production in Ireland—An approach to 2020 targets with a focus on algal biomass. Energies 6(12):6391–6412

    Google Scholar 

  • Office of Gas and Electricity Markets (2009) Biodiesel, glycerol and the renewables obligation. Decision Document

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol Adv 30(5):1031–1046. doi:10.1016/j.biotechadv.2012.05.001

    CAS  Google Scholar 

  • Oswald WJ (1988) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge

    Google Scholar 

  • Ozkurt I (2009) Qualifying of safflower and algae for energy. Energy Educ Sci Technol Part A 23(1–2):145–151

    CAS  Google Scholar 

  • Park S, Li YB (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48. doi:10.1016/j.biortech.2012.01.160

    CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102 (1, Sp. Iss. SI):35–42. doi:10.1016/j.biortech.2010.06.158

  • Peacocke C, Joseph S (ND) Notes on terminology and technology in thermal conversion. International Biochar Initiative. http://www.biochar-international.org/publications/IBI#Pyrolysis_guidelines. Accessed 15/04 2014

  • Peng WM, Wu QY, Tu PG (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12(2):147–152. doi:10.1023/a:1008115025002

    CAS  Google Scholar 

  • Perry RH, Chilton CH (1973) Chemical engineers’ handbook, 5th edn. McGraw Hill, Tokyo

    Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simoes M (2012) Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew Sustain Energ Rev 16(5):3043–3053. doi:10.1016/j.rser.2012.02.055

    CAS  Google Scholar 

  • Powell EE, Evitts RW, Hill GA, Bolster JC (2011) A microbial fuel cell with a photosynthetic microalgae cathodic half cell coupled to a yeast anodic half cell. Energy Sources Part A Recovery Util Environ Eff 33(5):440–448. doi:10.1080/15567030903096931

    CAS  Google Scholar 

  • Ramakrishnan B, Kumaraswamy S, Mallick K, Adhya TK, Rao VR, Sethunathan N (1998) Effect of various anionic species on net methane production in flooded rice soils. World J Microbiol Biotechnol 14(5):743–749. doi:10.1023/A:1008814925481

    CAS  Google Scholar 

  • Rashid N, Rehman MSU, Memon S, Rahman ZU, Lee K, Han JI (2013) Current status, barriers and developments in biohydrogen production by microalgae. Renew Sustain Energy Rev 22:571–579. doi:10.1016/j.rser.2013.01.051

    CAS  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energy 103(0):444–467. doi:10.1016/j.apenergy.2012.10.004

  • Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88(10):3507–3514. doi:10.1016/j.apenergy.2010.12.052

    CAS  Google Scholar 

  • Roberts K (1974) Crystalline glycoprotein cell walls of algae: their structure, composition and assembly. Philos Trans R Soc Lond B Biol Sci 268(891):129–146

    CAS  Google Scholar 

  • Rosenbaum M, He Z, Angenent LT (2010) Light energy to bioelectricity: photosynthetic microbial fuel cells. Curr Opin Biotechnol 21(3):259–264. doi:10.1016/j.copbio.2010.03.010

    CAS  Google Scholar 

  • Saidur R, Abdelaziz EA, Demirbas A, Hossain MS, Mekhilef S (2011) A review on biomass as a fuel for boilers. Renew Sustain Energy Rev 15(5):2262–2289. doi:10.1016/j.rser.2011.02.015

    CAS  Google Scholar 

  • Samson R, LeDuy A (1983) Improved performance of anaerobic digestion of Spirulina maxima algal biomass by addition of carbon-rich wastes. Biotechnol Lett 5(10):677–682. doi:10.1007/bf01386361

    Google Scholar 

  • Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17(1):33–39. doi:10.1016/s0961-9534(99)00019-7

    CAS  Google Scholar 

  • Schlarb-Ridley B (2011) Algal research in the UK. A report for BBSRC. BBSRC

  • Service RF (2011) Algae’s second try. Science 333:1238–1239

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US department of energy’s aquatic species program—biodiesel from algae. National Renewable Energy Laboratory NREL, Golden

    Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416. doi:10.1016/j.biotechadv.2009.03.001

    CAS  Google Scholar 

  • Sills DL, Paramita V, Franke MJ, Johnson MC, Akabas TM, Greene CH, Tester JW (2012) Quantitative uncertainty analysis of life cycle assessment for algal biofuel production. Environ Sci Technol 47(2):687–694. doi:10.1021/es3029236

    Google Scholar 

  • Singh U, Ahluwalia A (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strat Glob Change 18(1):73–95. doi:10.1007/s11027-012-9393-3

    Google Scholar 

  • Singh J, Gu S (2010) Biomass conversion to energy in India—a critique. Renew Sustain Energy Rev 14(5):1367–1378. doi:10.1016/j.rser.2010.01.013

    CAS  Google Scholar 

  • Singh A, Olsen SI (2011) A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl Energy 88(10):3548–3555. doi:10.1016/j.apenergy.2010.12.012

    CAS  Google Scholar 

  • Sippula O (2010) Fine particle formation and emissions in biomass combustion. University of Eastern Finland, Joensuu

    Google Scholar 

  • Sorensen B (2012) Hydrogen and fuel cells emerging technologies and applications, 2nd edn. Elsevier, Oxford

    Google Scholar 

  • Srirangan K, Pyne ME, Chou CP (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8604. doi:10.1016/j.biortech.2011.03.087

    CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24(7):4062–4077. doi:10.1021/ef1003123

    CAS  Google Scholar 

  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535–541. doi:10.1039/b819874h

    CAS  Google Scholar 

  • Suali E, Sarbatly R (2012) Conversion of microalgae to biofuel. Renew Sustain Energy Rev 16(6):4316–4342. doi:10.1016/j.rser.2012.03.047

    CAS  Google Scholar 

  • Subhadra B, Grinson G (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91(1):2–13. doi:10.1002/jsfa.4207

    CAS  Google Scholar 

  • Symons GE, Buswell AM (1933) The methane fermentation of carbohydrates 1, 2. J Am Chem Soc 55(5):2028–2036. doi:10.1021/ja01332a039

    CAS  Google Scholar 

  • Tarchevsky IA, Marchenko GN (1991) Cellulose: biosynthesis and structure. Springer, Berlin

    Google Scholar 

  • Taylor G (2008) Biofuels and the biorefinery concept. Energy Policy 36(12):4406–4409. doi:10.1016/j.enpol.2008.09.069

    Google Scholar 

  • ter Veld F (2012) Beyond the fossil fuel era: on the feasibility of sustainable electricity generation using biogas from microalgae. Energy Fuels 26(6):3882–3890. doi:10.1021/ef3004569

    Google Scholar 

  • Thorne R, Hu HN, Schneider K, Bombelli P, Fisher A, Peter LM, Dent A, Cameron PJ (2011) Porous ceramic anode materials for photo-microbial fuel cells. J Mater Chem 21(44):18055–18060. doi:10.1039/c1jm13058g

    CAS  Google Scholar 

  • Tokusoglu O, Unal MK (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148. doi:10.1111/j.1365-2621.2003.tb09615.x

    CAS  Google Scholar 

  • Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuels 26(1):658–671. doi:10.1021/ef201417e

    CAS  Google Scholar 

  • Twidell J, Weir T (2006) Renewable energy sources, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Varfolomeev SD, Wasserman LA (2011) Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol 47(9):789–807. doi:10.1134/s0003683811090079

    CAS  Google Scholar 

  • Velasquez-Orta SB, Curtis TP, Logan BE (2009) Energy from algae using microbial fuel cells. Biotechnol Bioeng 103(6):1068–1076. doi:10.1002/bit.22346

    CAS  Google Scholar 

  • Velasquez-Orta SB, Lee JGM, Harvey A (2012) Alkaline in situ transesterification of Chlorella vulgaris. Fuel 94:544–550. doi:10.1016/j.fuel.2011.11.045

    CAS  Google Scholar 

  • Wageningen University (2011) Research on microalgae within Wageningen UR http://www.algae.wur.nl/UK/technologies/biorefinery. Accessed 25/01 2013

  • Walker DA (2010) Biofuels—for better or worse? Ann Appl Biol 156(3):319–327. doi:10.1111/j.1744-7348.2010.00404.x

    Google Scholar 

  • Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res. doi:10.1016/j.algal.2014.02.001

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. doi:10.1007/s00253-009-2246-7

    CAS  Google Scholar 

  • Yang YF, Feng CP, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recycl 43(1):21–33. doi:10.1016/j.resconrec.2004.03.003

    Google Scholar 

  • Yang C, Jia LS, Chen CP, Liu GF, Fang WP (2011a) Bio-oil from hydro-liquefaction of Dunaliella sauna over Ni/REHY catalyst. Bioresour Technol 102(6):4580–4584. doi:10.1016/j.biortech.2010.12.111

    CAS  Google Scholar 

  • Yang J, Xu M, Zhang XZ, Hu QA, Sommerfeld M, Chen YS (2011b) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165. doi:10.1016/j.biortech.2010.07.017

    CAS  Google Scholar 

  • Zamalloa C, Vulsteke E, Albrecht J, Verstraete W (2011) The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour Technol 102(2):1149–1158. doi:10.1016/j.biortech.2010.09.017

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Milledge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milledge, J.J., Heaven, S. Methods of energy extraction from microalgal biomass: a review. Rev Environ Sci Biotechnol 13, 301–320 (2014). https://doi.org/10.1007/s11157-014-9339-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-014-9339-1

Keywords

Navigation