Skip to main content

Advertisement

Log in

Electrode materials used for electrochemical oxidation of organic compounds in wastewater

  • Mini Review
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Electrochemical oxidation (EO) of organic compounds is an outstanding technology capable of oxidizing organic pollutants to simple inorganic compounds such as H2O and CO2. Moreover, EO can be attributed to an energy-efficient process, since it requires only insignificant amount of energy in the form of an applied current or a potential to activate the electrodes. There is a vast variety of electrodes used in EO processes for organic compounds degradation. They are noble metal electrodes, such as Pt and Au, boron-doped diamond (BDD) electrodes, mixed metal oxide (MMO), graphite and carbon electrode, etc. In this regard, it becomes difficult to focus on existing electrode properties and characteristics and choose an anode material for a particular application. The aim of this study was to review information on existing anodes used in EO processes, their advantages and disadvantages, performance and application area. Thus far, MMO electrodes along with BDD electrodes are leading materials used in the processes of EO of dyes, pesticides, pharmaceuticals, industrial wastewaters, etc. This is due to their excellent catalytic properties and resistance to both corrosion and dissolution. The catalytic activity of MMO electrodes strongly depends not only on their composition but also on fabrication methods. Thus, a correlation was made between the methods of manufacturing, efficiency and cost in the MMO electrodes. Despite the wide variety of anodes, most of them are either relatively expensive to be used for large volumes of wastewater, or they consist of potentially toxic metals. Moreover, none of them are sufficiently efficient and stable. Therefore, cost-effective, efficient and “green” anodic materials are still under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaoui A, El Kacemi K, El Ass K, Kitane S, El Bouzidi S (2015) Activity of Pt/MnO2 electrode in the electrochemical degradation of methylene blue in aqueous solution. Sep Purif Technol 154:281–289

    Article  CAS  Google Scholar 

  • Aquino Neto S, de Andrad A (2009) Electrooxidation of glyphosate herbicide at different DSA® compositions: pH, concentration and supporting electrolyte effect. Electrochim Acta 54:2039–2045

    Article  CAS  Google Scholar 

  • Attia SM, Wang J, Wu G, Shen J, Ma J (2002) Review on sol–gel derived coatings: process, technique and optical applications. J Mater Sci Technol 18:211–218

    CAS  Google Scholar 

  • Baker P, Sanderson R, Crouch A (2007) Sol–gel preparation and characterisation of mixed metal tin oxide thin films. Thin Solid Films 515:6691–6697

    Article  CAS  Google Scholar 

  • Bashir MJK, Isa MH, Kutty SRM, Awang ZB, Aziz HA, Mohajeri S, Farooqi IH (2009) Landfill leachate treatment by electrochemical oxidation. Waste Manag 29:2534–2541

    Article  CAS  Google Scholar 

  • Beer BH (1966) Electrolysis with precious metalcoated titanium anode. Patent No. US3236756 A

  • Bogdanovskii G, Savel’eva T, Saburova T (2001) Phenol conversions during electrochemical generation of active chlorine. Russ J Electrochem 37:865–869

    Article  CAS  Google Scholar 

  • Chellammal S, Kalaiselvi P, Ganapathy P, Subramanian G (2016) Anodic incineration of phthalic anhydride using RuO2–IrO2–SnO2–TiO2 coated on Ti anode. Arabian J Chem 9:S1690–S1699

    Article  CAS  Google Scholar 

  • Chettiar M, Watkinson A (1983) Anodic oxidation of phenolics found in coal conversion effluents. Can J Chem Eng 61:568–574

    Article  CAS  Google Scholar 

  • Chu YY, Wang WJ, Wang M (2010) Anodic oxidation process for the degradation of 2, 4-dichlorophenol in aqueous solution and the enhancement of biodegradability. J Hazard Mater 180:247–252

    Article  CAS  Google Scholar 

  • Comninellis C (1991) Anodic oxidation of phenol for waste water treatment. J Appl Electrochem 21:703–708

    Article  CAS  Google Scholar 

  • Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39:1857–1862

    Article  CAS  Google Scholar 

  • Comninellis C, Plattner E (1988) Electrochemical wastewater treatment. Chimia 42:250–252

    CAS  Google Scholar 

  • Cruz J, Ramos Hernandez A, Guerra-Balcazar M, Arriaga LG (2012) Electrochemical evaluation of a Ir–Ru binary oxide for oxygen evolution reaction. Int J Electrochem Sci 7:7866–7876

    CAS  Google Scholar 

  • da Silva AJC, dos Santos EV, de Oliveira Morais CC, Martínez-Huitle CA, Leal Castro SS (2013) Electrochemical treatment of fresh, brine and saline produced water generated by petrochemical industry using Ti/IrO2–Ta2O5 and BDD in flow reactor. Chem Eng J 233:47–55

    Article  Google Scholar 

  • Ding HY, Feng YJ, Liu JF (2007) Preparation and properties of Ti/SnO2–Sb2O5 electrodes by electrodeposition. Mater Lett 61:4920–4923

    Article  CAS  Google Scholar 

  • Du L, Wu J, Hu C (2012) Electrochemical oxidation of Rhodamine B on RuO2–PdO–TiO2/Ti electrode. Electrochim Acta 68:69–73

    Article  CAS  Google Scholar 

  • Duan X, Ma F, Yuan Z, Chang L, Jin X (2013) Electrochemical degradation of phenol in aqueous solution using PbO2 anode. J Taiwan Inst Chem Eng 44:95–102

    Article  CAS  Google Scholar 

  • El-Ghenymy A, Centellas F, Rodriguez RM, Cabot PL, Garrido JA, Sires I, Brillas E (2015) Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye. Electrochim Acta 18:247–256

    Article  Google Scholar 

  • ElMekawy A, Hegab HM, Losic D, Saint CP, Pant D (2016) Applications of graphene in microbial fuel cells: the gap between promise and reality. Renew Sust Energy Rev. doi:10.1016/j.rser.2016.10.044

    Google Scholar 

  • Feng Y, Li X (2003) Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res 37:2399–2407

    Article  CAS  Google Scholar 

  • Fernandes A, Santos D, Pachero MJ, Ciriaco L, Lopes A (2014) Nitrogen and organic load removal from sanitary landfill leachates by anodic oxidation at Ti/Pt/PbO2, Ti/Pt/SnO2–Sb2O4 and Si/BDD. Appl Catal B 148–149:288–294

    Article  Google Scholar 

  • Freitas R, Oliveira RTS, Santos MC, Bulhões LOS, Pereira EC (2006) Preparation of Pt thin film electrodes using the Pechini method. Mater Lett 60:1906–1910

    Article  CAS  Google Scholar 

  • Gattrell M, Kirk D (1990) The electrochemical oxidation of aqueous phenol at a glassy carbon electrode. Can J Chem Eng 68:997–1003

    Article  CAS  Google Scholar 

  • Haidar M, Dirany A, Sirés I, Oturan N, Oturan MA (2013) Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere 91:1304–1309

    Article  CAS  Google Scholar 

  • Kirk D, Sharifian H, Foulkes F (1985) Anodic oxidation of aniline for waste water treatment. J Appl Electrochem 15:285–292

    Article  CAS  Google Scholar 

  • Kisacik I, Stefanova A, Ernst S, Baltruschat H (2013) Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals. Phys Chem Chem Phys 15:4616–4624

    Article  CAS  Google Scholar 

  • Klamklang S, Vergnes H, Senocq F et al (2010) Deposition of tin oxide, iridium and iridium oxide films by metal-organic chemical vapor deposition for electrochemical wastewater treatment. J Appl Electrochem 40:997–1004

    Article  CAS  Google Scholar 

  • Kong JT, Shi SY, Zhu XP, Ni JR (2007) Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb–SnO2 electrodes in the oxidation of 4-chlorophenol. J Environ Sci 19:1380–1386

    Article  CAS  Google Scholar 

  • Kötz R, Stucki S, Carcer B (1991) Electrochemical waste water treatment using high overvoltage anodes. Part I: physical and electrochemical properties of SnO2 anodes. J Appl Electrochem 21:14–20

    Article  Google Scholar 

  • Labiadh L, Barbucci A, Carpanese MP, Gadri A, Ammar S, Panizza M (2016) Comparative depollution of Methyl Orange aqueous solutions by electrochemical incineration using TiRuSnO2, BDD and PbO2 as high oxidation power anodes. J Electroanal Chem 766:94–99

    Article  CAS  Google Scholar 

  • Lee BS, Parl HY, Choi I, Cho MK, Kim HJ, Yoo SJ, Henkensmeier D, Kim JY, Nam SW, Park S, Lee KY, Jang JH (2016) Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature. J Power Sources 309:127–134

    Article  CAS  Google Scholar 

  • Li XY, Cui YH, Feng YJ, Xie ZM, Gu JD (2005) Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res 39:1972–1981

    Article  CAS  Google Scholar 

  • Li H, Zhu X, Jiang Y, Ni J (2010) Comparative electrochemical degradation of phthalic acid esters using boron-doped diamond and Pt anodes. Chemosphere 80:845–851

    Article  CAS  Google Scholar 

  • Li D, Tang J, Zhou X, Li J, Sun X, Shen J, Wang L, Han W (2016a) Electrochemical degradation of pyridine by Ti/SnO2–Sb tubular porous electrode. Chemosphere 149:49–56

    Article  CAS  Google Scholar 

  • Li X, Shao D, Xu H, Lv W, Yan W (2016b) Fabrication of a stable Ti/TiOxHy/Sb–SnO2 anode for aniline degradation in different electrolytes. Chem Eng J 285:1–10

    Article  CAS  Google Scholar 

  • Liang J, Geng C, Li D, Cui L, Wang X (2015) Preparation and degradation phenol characterization of Ti/SnO2–Sb–Mo electrode doped with different contents of molybdenum. J Mater Sci Technol 31:473–478

    Article  Google Scholar 

  • Lin H, Niu J, Ding S, Zhang L (2012) Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2–Sb, Ti/SnO2–Sb/PbO2 and Ti/SnO2–Sb/MnO2 anodes. Water Res 46:2281–2289

    Article  CAS  Google Scholar 

  • Liu M, Wang D (1995) Preparation of La1−zSrzCo1−yFeyO3−x thin films, membranes, and coatings on dense and porous substrates. J Mater Res 10:3210–3221

    Article  CAS  Google Scholar 

  • Lv J, Feng Y, Liu J, Qu Y, Cui F (2013) Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes. Appl Surf Sci 283:900–905

    Article  CAS  Google Scholar 

  • Makgae M, Klink M, Crouch A (2008) Performance of sol–gel titanium mixed metal oxide electrodes for electro-catalytic oxidation of phenol. Appl Catal B Environ 84:659–666

    Article  CAS  Google Scholar 

  • Martin N, Rousselot C, Savall C, Palmino F (1996) Characterizations of titanium oxide films prepared by radio frequency magnetron sputtering. Thin Solid Films 287:154–163

    Article  CAS  Google Scholar 

  • Martínez-Huitle C (2004) Direct and indirect electrochemical oxidation of organic pollutants, Dissertation thesis. University of Ferrara

  • Martínez-Huitle C, Ferro S (2006) Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem Soc Rev 35:1324–1340

    Article  Google Scholar 

  • Meaney K, Omanovic S (2007) Sn0.86–Sb0.03–Mn0.10–Pt0.01-oxide/Ti anode for the electro-oxidation of aqueous organic wastes. Mater Chem Phys 105:143–147

    Article  CAS  Google Scholar 

  • Mooney J, Radding S (1982) Spray pyrolysis processing. Ann Rev Mater Sci 12:81–101

    Article  CAS  Google Scholar 

  • Moraes P, Bertazzoli R (2005) Electrodegradation of landfill leachate in a flow electrochemical reactor. Chemosphere 58:41–46

    Article  CAS  Google Scholar 

  • Motheo A, Gonzalez ER, Tremiliosi-Filho G, Olivi P, de Andrade AR, Kokoh B, Léger JM, Belgsir EM, Lamy C (2000) The oxidation of formaldehyde on high overvoltage DSA type electrodes. J Braz Chem Soc 11:16–21

    Article  CAS  Google Scholar 

  • Natishan PM, O’Grady WE, Martin FJ, Hagans PL, Martin H, Stoner BR (2013) Electrochemical oxidation of organic compounds using boron-doped diamond electrodes. ECS Trans 45:19–30

    Article  Google Scholar 

  • Nilsson A, Ronlán A, Parker V (1973) Anodic oxidation of phenolic compounds. Part III. Anodic hydroxylation of phenols. A simple general synthesis of 4-alkyl-4-hydroxycyclo-hexa-2,5-dienones from 4-alkylphenols. J Chem Soc Perkin Trans 1:2337–2345

    Article  Google Scholar 

  • Nordin N, Amir F, Riyanto Othman M (2013) Textile Industries wastewater treatment by electrochemical oxidation technique using metal plate. Int J Electrochem Sci 8:11403–11415

    CAS  Google Scholar 

  • Okimura K (2001) Low temperature growth of rutile TiO films in modified rf magnetron sputtering. Surf Coat Technol 135:286–290

    Article  CAS  Google Scholar 

  • Panakoulias T, Kalatzis P, Kalderis D, Katsaounis A (2010) Electrochemical degradation of Reactive Red 120 using DSA and BDD anodes. J Appl Electrochem 40:1759–1765

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Panizza M, Brillas E, Comninellis C (2008) Application of boron-doped diamond electrodes for wastewater treatment. J Environ Eng Manag 18:139–153

    CAS  Google Scholar 

  • Pasupuleti SB, Srikanth S, Mohan SV, Pant D (2015a) Continuous mode operation of microbial fuel cell (MFC) stack with dual gas diffusion cathode design for the treatment of dark fermentation effluent. Int J Hydrog Energy 40:12424–12435

    Article  CAS  Google Scholar 

  • Pasupuleti SB, Srikanth S, Mohan SV, Pant D (2015b) Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Bioresour Technol 195:131–138

    Article  CAS  Google Scholar 

  • Patel P, Bandre N, Saraf A, Ruparelia JP (2013) Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Proc Eng 51:430–435

    Article  CAS  Google Scholar 

  • Pechini M (1967). Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. USA, Patent No. US 3330697 A

  • Pereira G, Rocha-Filho R, Bocchi N, Biaggio S (2012) Electrochemical degradation of bisphenol A using a flow reactor with a boron-doped diamond anode. Chem Eng J 198–199:282–288

    Article  Google Scholar 

  • Pereira G, Rocha-Filho R, Bocchi N, Biaggio S (2015) Electrochemical degradation of the herbicide picloram using a filter-press flow reactor with a boron-doped diamond or β-PbO2 anode. Electrochim Acta 179:588–598

    Article  CAS  Google Scholar 

  • Petit M, Plichon V (1998) Anodic electrodeposition of iridium oxide films. J Electroanal Chem 444:247–252

    Article  CAS  Google Scholar 

  • Pletcher D, Walsh F (1990) Industrial electrochemistry. Springer, New York

    Google Scholar 

  • Radha K, Sridevi V, Kalaivani K (2009) Electrochemical oxidation for the treatment of textile industry wastewater. Bioresour Technol 100:987–990

    Article  CAS  Google Scholar 

  • Rajkumar D, Palanivelu K, Mohan N (2001) Electrochemical oxidation of resorcinol for wastewater treatment using Ti/TiO2–RuO2-IrO2 electrode. J Environ Sci Health A Tox Hazard Subst Environ Eng 36:1997–2010

    Article  CAS  Google Scholar 

  • Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce-de-León C, Walsh FC (2011) The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim Acta 56:5158–5165

    Article  CAS  Google Scholar 

  • Santana M, de Faria L, Boodts J (2005) Electrochemical characterisation and oxygen evolution at a heavily boron doped diamond electrode. Electrochim Acta 50:2017–2027

    Article  CAS  Google Scholar 

  • Sequeira C (1994) Studies in environmental science 59. Environmental oriented electrochemistry. Elsevier Science BV, Amsterdam

    Google Scholar 

  • Sharifian H, Kirk D (1986) Electrochemical oxidation of phenol. J Electrochem Soc 133:921–924

    Article  CAS  Google Scholar 

  • Shestakova M, Bonet P, Gómez R, Sillanpää M, Tang WZ (2014) Novel Ti/Ta2O5–SnO2 electrodes for water electrolysis and electrocatalytic oxidation of organics. Electrochim Acta 120:302–307

    Article  CAS  Google Scholar 

  • Shestakova M, Vinatoru M, Mason T, Sillanpää M (2015) Sonoelectrocatalytic decomposition of methylene blue using Ti/Ta2O5–SnO2 electrodes. Ultrason Sonochem 23:135–141

    Article  CAS  Google Scholar 

  • Shestakova M, Graves J, Sitarz M, Sillanpää M (2016) Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. J Appl Electrochem 46:349–358

    Article  CAS  Google Scholar 

  • Smith de Sucre V, Watkinson A (1981) Anodic oxidation of phenol for waste water treatment. Can J Chem Eng 59:52–59

    Article  Google Scholar 

  • Stucki S, Kötz R, Carcer B, Suter W (1991) Electrochemical wastewater treatment using high overvoltage anodes. Part II: anode performance and applications. J Appl Electrochem 21:99–104

    Article  CAS  Google Scholar 

  • Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45:2377–2385

    Article  CAS  Google Scholar 

  • Un U, Altay U, Koparal A, Ogutveren U (2008) Complete treatment of olive mill wastewaters by electrooxidation. Chem Eng J 139:445–452

    Article  CAS  Google Scholar 

  • Urtiaga A, Fernandez-Castro P, Gómez P, Ortiz I (2014) Remediation of wastewaters containing tetrahydrofuran. Study of the electrochemical mineralization on BDD electrodes. Chem Eng J 239:341–350

    Article  CAS  Google Scholar 

  • Wang H, Wang J (2007) Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode. Appl Catal B Environ 7:58–65

    Article  Google Scholar 

  • Wei J, Feng Y, Sun XLJ, Zhu L (2011) Effectiveness and pathways of electrochemical degradation of pretilachlor herbicides. J Hazard Mater 189:84–91

    Article  CAS  Google Scholar 

  • Xu L, Guo Z, Du L, He J (2013) Decolourization and degradation of C.I. Acid Red 73 by anodic oxidation and the synergy technology of anodic oxidation coupling nanofiltration. Electrochim Acta 97:150–159

    Article  CAS  Google Scholar 

  • Yahiaoui I, Aissani-Benissad F, Fourcade F, Amran A (2013) Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO2 electrode) coupled to activated sludge culture. Chem Eng J 221:418–425

    Article  CAS  Google Scholar 

  • Yao Y, Zhao C, Zhao M, Wang X (2013) Electrocatalytic degradation of methylene blue on PbO2–ZrO2 nanocomposite electrodes prepared by pulse electrodeposition. J Hazard Mater 263:726–734

    Article  CAS  Google Scholar 

  • Zayas T, Picazo M, Salgado L (2011) Removal of organic matter from paper mill effluent by electrochemical oxidation. J Water Resour Prot 3:32–40

    Article  CAS  Google Scholar 

  • Zhang J, Wei Y, Jin G, Wei G (2010) Active stainless steel/SnO2–CeO2 anodes for pollutants oxidation prepared by thermal decomposition. J Mater Sci Technol 26:187–192

    Article  CAS  Google Scholar 

  • Zhao G, Shen S, Li M, Li D (2008) The mechanism and kinetics of ultrasound-enhanced electrochemical oxidation of phenol on boron-doped diamond and Pt electrodes. Chemosphere 73:1407–1413

    Article  CAS  Google Scholar 

  • Zhou M, Liu L, Jiao Y, Wang Q, tan Q (2011) Treatment of high-salinity reverse osmosis concentrate by electrochemical oxidation on BDD and DSA electrodes. Desalination 277:201–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Shestakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakova, M., Sillanpää, M. Electrode materials used for electrochemical oxidation of organic compounds in wastewater. Rev Environ Sci Biotechnol 16, 223–238 (2017). https://doi.org/10.1007/s11157-017-9426-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-017-9426-1

Keywords

Navigation