Skip to main content

Advertisement

Log in

Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

A Correction to this article was published on 18 July 2020

This article has been updated

Abstract

Lignocellulosic biomass is the earth’s most abundant renewable feedstock alternative that comprises of cellulose, hemi-cellulose and lignin. The synergistic action of cellulolytic/xylanolytic enzymes produced by lignocellulolytic micro-organisms such as bacteria, algae and fungi are capable of robust cellulosic biomass deconstruction. Most of the microorganisms dwelling in extreme environmental habitats such as rumen environment, hot/cold springs, deep ocean trenches, acidic/alkaline pH environment have been considered as an attractive producers of hemi/cellulolytic lignocellulolytic and other biotechnological enzymes with enhanced bio-chemical properties essential for industrial bioconversion processes. However, the potential microbial sources of cellulolytic enzymes and the underlying mechanism to achieve this is not fully elucidated. In this review article, first we detail the composition of lignocellulosic biomass. Next, we describe the structure and functions of divergent hydrolytic enzymes (cellulolytic and xylanolytic enzymes) involved in cellulosic biomass degradation. Third, we analyze, outline and unveil the prospective source of microbes encoding exceptionally diverse set of biotechnologically relevant cellulolytic enzymes which are critical to answer the specific ecological question of by whom, where and how cellulosic biomass is degraded in the environment. Finally, this review article features the snapshot about the future developments and perspectives on microbial enzymes, high-throughput techniques and molecular tools that could be exploited to derive those enzymes from the potential sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

  • 18 July 2020

    The complete affiliations of three authors and one of the co-author’s name, “Naveen Kumar Arora” was published incorrectly in the original publication of the article. The correct version of affiliations and the co-author’s name has been corrected in this correction.

Notes

  1. http://www.cazy.org/.

  2. http://www.cazy.org/.

References

  • Abe F (2007) Exploration of the effects of high hydrostatic pressure on microbial growth, physiology and survival: perspectives from piezophysiology. Biosci Biotechnol Biochem 71:2347–2357

    CAS  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Google Scholar 

  • Ahirwar S, Soni H, Prajapati BP, Kango N (2017) Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology 8:125–134

    CAS  Google Scholar 

  • Aikawa S et al (2018) Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium. Syst Appl Microbiol 41:261–269

    CAS  Google Scholar 

  • Akila G, Chandra TS (2003) A novel cold-tolerant Clostridium strain PXYL1 isolated from a psychrophilic cattle manure digester that secretes thermolabile xylanase and cellulase. FEMS Microbiol Lett 219:63–67. https://doi.org/10.1016/s0378-1097(02)01196-5

    Article  CAS  Google Scholar 

  • Ali ZM, Gibson LJ (2013) The structure and mechanics of nanofibrillar cellulose foams. Soft Matter 9:1580–1588. https://doi.org/10.1039/c2sm27197d

    Article  CAS  Google Scholar 

  • Al-Masaudi S, El Kaoutari A, Drula E, Al-Mehdar H, Redwan EM, Lombard V, Henrissat B (2017) A metagenomics investigation of carbohydrate-active enzymes along the gastrointestinal tract of Saudi Sheep. Front Microbiol 8:666. https://doi.org/10.3389/fmicb.2017.00666

    Article  Google Scholar 

  • Al-Masaudi S, El Kaoutari A, Drula E, Redwan EM, Lombard V, Henrissat B (2019) A metagenomics investigation of carbohydrate-active enzymes along the goat and camel intestinal tract International microbiology. Offic J Span Soc Microbiol. https://doi.org/10.1007/s10123-019-00068-2

    Article  Google Scholar 

  • An D-S et al (2005) Cellulomonas terrae sp. nov., a cellulolytic and xylanolytic bacterium isolated from soil. Int J Syst Evol Microbiol 55:1705–1709

    CAS  Google Scholar 

  • Andrykovitch G, Marx I (1988) Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 54:1061–1062

    CAS  Google Scholar 

  • Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Chapter sixteen—biomethanation and its potential. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology, vol 494. Academic Press, Cambridge, pp 327–351. https://doi.org/10.1016/B978-0-12-385112-3.00016-0

    Chapter  Google Scholar 

  • Arakawa G, Watanabe H, Yamasaki H, Maekawa H, Tokuda G (2009) Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Biosci Biotechnol Biochem 73:710–718

    CAS  Google Scholar 

  • Arora NK, Mishra J, Mishra V (2020) Microbial enzymes: roles and applications in industries

  • Ayayee P, Rosa C, Ferry JG, Felton G, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43:903–912

    CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromol 6:612–626

    Google Scholar 

  • Bachmann SL, McCarthy AJ (1991) Purification and cooperative activity of enzymes constituting the xylan-degrading system of Thermomonospora fusca. Appl Environ Microbiol 57:2121–2130

    CAS  Google Scholar 

  • Bala A, Singh B (2019) Cellulolytic and xylanolytic enzymes of thermophiles for the production of renewable biofuels. Renew Energy 136:1231–1244

    CAS  Google Scholar 

  • Balabanova L, Slepchenko L, Son O, Tekutyeva L (2018) Biotechnology potential of marine fungi degrading plant and algae polymeric substrates. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01527

    Article  Google Scholar 

  • Banerjee A, Chatterjee K, Madras G (2014) Enzymatic degradation of polymers: a brief review. Mater Sci Technol 30:567–573

    CAS  Google Scholar 

  • Baross J, Lenovich L (1992) Halophilic and osmophilic microorganisms Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington, DC, pp 199–212

    Google Scholar 

  • Beckham GT, Bomble YJ, Bayer EA, Himmel ME, Crowley MF (2011) Applications of computational science for understanding enzymatic deconstruction of cellulose. Curr Opin Biotechnol 22:231–238. https://doi.org/10.1016/j.copbio.2010.11.005

    Article  CAS  Google Scholar 

  • Béguin P, Aubert J-P (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25

    Google Scholar 

  • Beguin P, Cornet P, Aubert J (1985) Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum. J Bacteriol 162:102–105

    CAS  Google Scholar 

  • Bélaich J-P, Tardif C, Bélaich A, Gaudin C (1997) The cellulolytic system of Clostridium cellulolyticum. J Biotechnol 57:3–14

    Google Scholar 

  • Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617. https://doi.org/10.1021/ma00194a019

    Article  CAS  Google Scholar 

  • Ben Guerrero E et al (2015) Prospection and evaluation of (Hemi) cellulolytic enzymes using untreated and pretreated biomasses in two Argentinean native termites. PLoS ONE 10:e0136573. https://doi.org/10.1371/journal.pone.0136573

    Article  CAS  Google Scholar 

  • Bhalla TC, Thakur N, Thakur N (2017) Invertase of Saccharomyces cerevisiae SAA-612: production, characterization and application in synthesis of fructo-oligosaccharides. LWT 77:178–185

    Google Scholar 

  • Bhat M, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    CAS  Google Scholar 

  • Bhatia Y, Mishra S, Bisaria V (2002) Microbial β-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22:375–407

    CAS  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    CAS  Google Scholar 

  • Bird AR, Conlon MA, Christophersen CT, Topping DL (2010) Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Benef Microb 1:423–431. https://doi.org/10.3920/bm2010.0041

    Article  CAS  Google Scholar 

  • Birolli WG, Lima RN, Porto ALM (2019) Applications of Marine-derived microorganisms and their enzymes in biocatalysis and biotransformation, the underexplored potentials. Front Microbiol. https://doi.org/10.3389/fmicb.2019.01453

    Article  Google Scholar 

  • Bischof RH, Ramoni J, Seiboth B (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb Cell Fact 15:106

    Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J, Adams MW, Kelly RM (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    CAS  Google Scholar 

  • Bohlin C, Praestgaard E, Baumann MJ, Borch K, Praestgaard J, Monrad RN, Westh P (2013) A comparative study of hydrolysis and transglycosylation activities of fungal β-glucosidases. Appl Microbiol Biotechnol 97:159–169

    CAS  Google Scholar 

  • Boyce A, Walsh G (2018) Purification and characterisation of a thermostable beta-xylosidase from Aspergillus niger van Tieghem of potential application in Lignocellulosic bioethanol production. Appl Biochem Biotechnol 186:712–730. https://doi.org/10.1007/s12010-018-2761-z

    Article  CAS  Google Scholar 

  • Brennan Y et al (2004) Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70:3609–3617. https://doi.org/10.1128/aem.70.6.3609-3617.2004

    Article  CAS  Google Scholar 

  • Brown RM (1996) The Biosynthesis of cellulose. J Macromol Sci Part A 33:1345–1373. https://doi.org/10.1080/10601329608014912

    Article  Google Scholar 

  • Brownlie JC, Johnson KN (2009) Symbiont-mediated protection in insect hosts. Trends Microbiol 17:348–354

    CAS  Google Scholar 

  • Brulc JM et al (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci USA 106:1948–1953. https://doi.org/10.1073/pnas.0806191105

    Article  Google Scholar 

  • Brumm PJ (2013) Bacterial genomes: what they teach us about cellulose degradation. Biofuels. 4:669–681. https://doi.org/10.4155/bfs.13.44

    Article  CAS  Google Scholar 

  • Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nat Rev Microbiol 12:168

    CAS  Google Scholar 

  • Buchanan G, Herdt RW, Tweeten LG (2010) Agricultural productivity strategies for the future: addressing U.S. and global challenges. Issue paper—Council for Agricultural Science and Technology

  • Bugg TD, Williamson JJ, Rashid GM (2020) Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr Opin Chem Biol 55:26–33

    CAS  Google Scholar 

  • Caf Y, Valipour E, Arikan B (2014) Study on cold-active and acidophilic cellulase (CMCase) from a novel psychrotrophic isolat Bacillus sp. K-11. Int J Curr Microbiol App Sci 3:16–25

    CAS  Google Scholar 

  • Cairo JPLF et al (2011) Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi. Biotechnol Biofuels 4:50

    CAS  Google Scholar 

  • Champreda V, Mhuantong W, Lekakarn H, Bunterngsook B, Kanokratana P, Zhao XQ, Zhang F, Inoue H, Fujii T, Eurwilaichitr L (2019) Designing cellulolytic enzyme systems for biorefinery: From nature to application. J Biosci Bioeng. https://doi.org/10.1016/j.jbiosc.2019.05.007

    Article  Google Scholar 

  • Chandel AK, Chandrasekhar G, Silva MB, Silvério da Silva S (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    CAS  Google Scholar 

  • Chávez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 123:413–433

    Google Scholar 

  • Cheema TA, Jirajaroenrat K, Sirinarumitr T, Rakshit SK (2012) Isolation of a gene encoding a cellulolytic enzyme from swamp buffalo rumen metagenomes and its cloning and expression in Escherichia coli. Anim Biotechnol 23:261–277

    CAS  Google Scholar 

  • Chen H (2005) Biotechnology of lignocellulose. Springer, Berlin, pp 73–141

    Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose theory and practice. Chemical Industry Press and Springer, Cham

    Google Scholar 

  • Chidi SB, Godana B, Ncube I, Van Rensburg EJ, Cronshaw A, Abotsi EK (2008) Production, purification and characterization of celullase-free xylanase from Aspergillus terreus UL 4209. Afr J Biotechnol 7:3939–3948

    CAS  Google Scholar 

  • Choi J-M, Han S-S, Kim H-S (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33:1443–1454

    CAS  Google Scholar 

  • Chung SH et al (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci 110:15728–15733

    CAS  Google Scholar 

  • Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139. https://doi.org/10.1074/jbc.m204517200

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    CAS  Google Scholar 

  • Cotta MA, Hespell RB (1986) Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl Environ Microbiol 52:51–58

    CAS  Google Scholar 

  • Cowan DA, Smolenski KA, Daniel RM, Morgan HW (1987) An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 degrees C. Biochem J 247:121–133. https://doi.org/10.1042/bj2470121

    Article  CAS  Google Scholar 

  • Crennell SJ, Hreggvidsson GO, Karlsson EN (2002) The structure of Rhodothermus marinus Cel12A, a highly thermostable family 12 endoglucanase, at 1.8 Å resolution. J Mol Biol 320:883–897

    CAS  Google Scholar 

  • Cristobal HA, Breccia JD, Abate CM (2008) Isolation and molecular characterization of Shewanella sp. G5, a producer of cold-active beta-D-glucosidases. J Basic Microbiol 48:16–24. https://doi.org/10.1002/jobm.200700146

    Article  CAS  Google Scholar 

  • Dai X et al (2012) Metagenomic insights into the fibrolytic microbiome in yak rumen. PLoS ONE 7:e40430

    CAS  Google Scholar 

  • Dan S, Marton I, Dekel M, Bravdo B-A, He S, Withers SG, Shoseyov O (2000) Cloning, expression, characterization, and nucleophile identification of family 3, Aspergillus niger β-glucosidase. J Biol Chem 275:4973–4980

    CAS  Google Scholar 

  • DasSarma S, DasSarma P (2001) Halophiles eLS, pp 1–13

  • DeAngelis KM et al (2010) Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities. Bioenergy Res 3:146–158

    CAS  Google Scholar 

  • Del Pozo MV et al (2012) Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail. Biotechnol Biofuels 5:73

    Google Scholar 

  • Del Río JC, Marques G, Rencoret J, Martínez ÁT, Gutiérrez A (2007) Occurrence of naturally acetylated lignin units. J Agric Food Chem 55:5461–5468. https://doi.org/10.1021/jf0705264

    Article  CAS  Google Scholar 

  • Del-Cid A et al (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172:524–532

    CAS  Google Scholar 

  • Dos Santos YQ, De Veras BO, De Franca AFJ, Gorlach-Lira K, Velasques J, Migliolo L, Dos Santos EA (2018a) A new salt-tolerant thermostable cellulase from a marine Bacillus sp. strain. J Microbiol Biotechnol 28:1078–1085

    Google Scholar 

  • Dos Santos YQ, De Veras BO, De Franca AFJ, Gorlach-Lira K, Velasques J, Migliolo L, Dos Santos EA (2018b) A new salt-tolerant thermostable cellulase from a Marine Bacillus sp. Strain J Microbiol Biotechnol 28:1078–1085

    Google Scholar 

  • Douglas A (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37

    CAS  Google Scholar 

  • Dragone G, Kerssemakers AA, Driessen JL, Yamakawa CK, Brumano LP, Mussatto SI (2020) Innovation and strategic orientations for the development of advanced biorefineries. Bioresour Technol 122847

  • Dutta T, Sahoo R, Sengupta R, Ray SS, Bhattacharjee A, Ghosh S (2008) Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization. J Ind Microbiol Biotechnol 35:275–282. https://doi.org/10.1007/s10295-008-0304-2

    Article  CAS  Google Scholar 

  • Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 1–12

  • Elberson MA et al (2000) Cellulomonas persica sp. nov. and Cellulomonas iranensis sp. nov., mesophilic cellulose-degrading bacteria isolated from forest soils. Int J Syst Evol Microbiol 50:993–996

    CAS  Google Scholar 

  • Ferrer M et al (2005) Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol 7:1996–2010. https://doi.org/10.1111/j.1462-2920.2005.00920.x

    Article  CAS  Google Scholar 

  • Flint HJ (1997) The rumen microbial ecosystem—some recent developments. Trends Microbiol 5:483–488. https://doi.org/10.1016/S0966-842X(97)01159-1

    Article  CAS  Google Scholar 

  • Flint HJ, McPherson CA, Avgustin G, Stewart CS (1990) Use of a cellulase-encoding gene probe to reveal restriction fragment length polymorphisms among ruminal strains of Bacteroides succinogenes. Curr Microbiol 20:63–67. https://doi.org/10.1007/bf02094027

    Article  CAS  Google Scholar 

  • Fraga M, Fernández S, Perelmuter K, Pomiés N, Cajarville C, Zunino P (2018) The use of Prevotella bryantii 3C5 for modulation of the ruminal environment in an ovine model. Br J Microbiol 49(Suppl 1):101–106. https://doi.org/10.1016/j.bjm.2018.07.004[publication of the Brazilian Society for Microbiology]

    Article  CAS  Google Scholar 

  • Garg R, Srivastava R, Brahma V, Verma L, Karthikeyan S, Sahni G (2016) Biochemical and structural characterization of a novel halotolerant cellulase from soil metagenome. Sci Rep 6:39634. https://doi.org/10.1038/srep39634

    Article  CAS  Google Scholar 

  • Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253

    CAS  Google Scholar 

  • Gerardi C, Blando F, Santino A, Zacheo G (2001) Purification and characterisation of a β-glucosidase abundantly expressed in ripe sweet cherry (Prunus avium L.) fruit. Plant Sci 160:795–805

    CAS  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766. https://doi.org/10.1098/rsif.2012.0341

    Article  CAS  Google Scholar 

  • Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA (2012) Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 5:566

    CAS  Google Scholar 

  • Grigorevski-Lima A, Da Vinha F, Souza D, Bispo A, Bon E, Coelho R, Nascimento R (2009) Aspergillus fumigatus thermophilic and acidophilic endoglucanases. Appl Biochem Biotechnol 155:18–26

    Google Scholar 

  • Griswold K, Mackie R (1997) Degradation of protein and utilization of the hydrolytic products by a predominant ruminal bacterium, Prevotella ruminicola B14. J Dairy Sci 80:167–175

    CAS  Google Scholar 

  • Grum-Grzhimaylo AA et al (2018) The obligate alkalophilic soda-lake fungus Sodiomyces alkalinus has shifted to a protein diet. Mol Ecol 27:4808–4819. https://doi.org/10.1111/mec.14912

    Article  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    CAS  Google Scholar 

  • Hackmann TJ, Spain JN (2010) Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production. J Dairy Sci 93:1320–1334. https://doi.org/10.3168/jds.2009-2071

    Article  CAS  Google Scholar 

  • Haegeman A, Vanholme B, Gheysen G (2009) Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis. Mol Plant Pathol 10:389–401

    CAS  Google Scholar 

  • Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1:151–156

    CAS  Google Scholar 

  • Hakamada Y, Hatada Y, Koike K, Yoshimatsu T, Kawai S, Kobayashi T, Ito S (2000) Deduced amino acid sequence and possible catalytic residues of a thermostable, alkaline cellulase from an alkaliphilic Bacillus strain. Biosci Biotechnol Biochem 64:2281–2289

    CAS  Google Scholar 

  • Hall AB, Tolonen AC, Xavier RJ (2017) Human genetic variation and the gut microbiome in disease. Nat Rev Genet 18:690. https://doi.org/10.1038/nrg.2017.63

    Article  CAS  Google Scholar 

  • Hashimoto K, Yoshida M, Hasumi K (2011) Isolation and characterization of CcAbf62A, a GH62 &alpha;- < small > L</small > -Arabinofuranosidase, from the Basidiomycete Coprinopsis cinerea. Biosci Biotechnol Biochem 75:342–345. https://doi.org/10.1271/bbb.100434

    Article  CAS  Google Scholar 

  • Hays WS, VanderJagt DJ, Bose B, Serianni AS, Glew RH (1998) Catalytic mechanism and specificity for hydrolysis and transglycosylation reactions of cytosolic β-glucosidase from guinea pig liver. J Biol Chem 273:34941–34948

    CAS  Google Scholar 

  • Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18. https://doi.org/10.1016/j.biortech.2008.05.027

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    CAS  Google Scholar 

  • Herrera LM, Braña V, Franco Fraguas L, Castro-Sowinski S (2019) Characterization of the cellulase-secretome produced by the Antarctic bacterium Flavobacterium sp. AUG42. Microbiol Res 223-225:13–21. https://doi.org/10.1016/j.micres.2019.03.009

    Article  CAS  Google Scholar 

  • Hess M et al (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. https://doi.org/10.1126/science.1200387

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    CAS  Google Scholar 

  • Honda Y, Kitaoka M (2004) A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem 279:55097–55103. https://doi.org/10.1074/jbc.m409832200

    Article  CAS  Google Scholar 

  • Hosseini M (2019) A perspective on bioprocessing for biofuels, bio-based chemicals, and bioproducts. In Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts. Woodhead Publishing, pp 1–11

  • Houfani AA et al (2019) Cellulase-hemicellulase activities and bacterial community composition of different soils from Algerian ecosystems. Microb Ecol 77:713–725. https://doi.org/10.1007/s00248-018-1251-8

    Article  CAS  Google Scholar 

  • Hrmova M, De Gori R, Smith BJ, Fairweather JK, Driguez H, Varghese JN, Fincher GB (2002) Structural basis for broad substrate specificity in higher plant β-D-glucan glucohydrolases. Plant Cell 14:1033–1052

    CAS  Google Scholar 

  • Hu Y et al (2018) Cloning and expression of a novel alpha-1,3-arabinofuranosidase from Penicillium oxalicum sp. 68. AMB Exp 8:51. https://doi.org/10.1186/s13568-018-0577-4

    Article  CAS  Google Scholar 

  • Hungate RE (1944) Studies on cellulose fermentation: I. The culture and physiology of an anaerobic cellulose-digesting bacterium. J bacteriol 48(5):499–513

    CAS  Google Scholar 

  • Hungate RE (1950) The anaerobic mesophilic cellulolytic bacteria. Bacteriol Rev 14:1–49

    CAS  Google Scholar 

  • Hurst D, Børresen T, Almesjö L, De Raedemaecker F, Bergseth S (2016) Marine biotechnology strategic research and innovation roadmap: insights to the future direction of European marine biotechnology. Marine Biotechnology ERA-NET, Oostende

    Google Scholar 

  • Igarashi K, Tani T, Rie K, Masahiro S (2003) Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1, 3-β-glucosidase. J Biosci Bioeng 95:572–576

    CAS  Google Scholar 

  • Irfan M, Safdar A, Syed Q, Nadeem M (2012) Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity. Turk J Biochem/Turk Biyokim Derg 37(3)

  • Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-reducing thermo-acidophilic heterotrophic Proteobacterium. Arch Microbiol 185:212–221

    CAS  Google Scholar 

  • Jones DR, Thomas D, Alger N, Ghavidel A, Inglis GD, Abbott DW (2018) SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets. Biotechnol Biofuels 11:27. https://doi.org/10.1186/s13068-018-1027-x

    Article  CAS  Google Scholar 

  • Jose VL, More RP, Appoothy T, Arun AS (2017) In depth analysis of rumen microbial and carbohydrate-active enzymes profile in Indian crossbred cattle. Syst Appl Microbiol 40:160–170. https://doi.org/10.1016/j.syapm.2017.02.003

    Article  CAS  Google Scholar 

  • Julliand V, de Vaux A, Millet L, Fonty G (1999) Identification of Ruminococcus flavefaciens; as the predominant cellulolytic bacterial species of the equine cecum. Appl Environ Microbiol 65:3738

    CAS  Google Scholar 

  • Jung YR et al (2015) Cellulolytic enzymes produced by a newly isolated soil fungus Penicillium sp. TG2 with potential for use in cellulosic ethanol production. Renew Energy 76:66–71

    CAS  Google Scholar 

  • Juturu V, Wu JC (2018) Production of high concentration of l-lactic acid from oil palm empty fruit bunch by thermophilic Bacillus coagulans JI12. Biotechnol Appl Biochem 65:145–149

    CAS  Google Scholar 

  • Kala A, Kamra DN, Kumar A, Agarwal N, Chaudhary LC, Joshi CG (2017) Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen. PLoS ONE 12:e0172051. https://doi.org/10.1371/journal.pone.0172051

    Article  CAS  Google Scholar 

  • Kamra DN (2005) Rumen microbial ecosystem. Curr Sci 89:124–135

    CAS  Google Scholar 

  • Kamra D, Patra A, Chatterjee P, Kumar R, Agarwal N, Chaudhary L (2008) Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Aust J Exp Agric 48:175–178

    CAS  Google Scholar 

  • Kane SD, French CE (2018) Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microb Technol 113:9–17

    CAS  Google Scholar 

  • Kanokratana P, Chantasingh D, Champreda V, Tanapongpipat S, Pootanakit K, Eurwilaichitr L (2008) Identification and expression of cellobiohydrolase (CBHI) gene from an endophytic fungus, Fusicoccum sp. (BCC4124) in Pichia pastoris. Protein Exp Purif 58:148–153

    CAS  Google Scholar 

  • Kato S, Haruta S, Cui ZJ, Ishii M, Yokota A, Igarashi Y (2004) Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. Int J Syst Evol Microbiol 54:2043–2047

    Google Scholar 

  • Kaur AP et al (2015) Functional and structural diversity in GH62 α-L-arabinofuranosidases from the thermophilic fungus Scytalidium thermophilum. Microb Biotechnol 8:419–433. https://doi.org/10.1111/1751-7915.12168

    Article  CAS  Google Scholar 

  • Kim JY, Hur SH, Hong JH (2005) Purification and characterization of an alkaline cellulase from a newly isolated alkalophilic Bacillus sp. HSH-810. Biotechnol lett 27(5):313–316

    CAS  Google Scholar 

  • Kim S, Kim CH (2012) Production of cellulase enzymes during the solid-state fermentation of empty palm fruit bunch fiber. Bioprocess Biosyst Eng 35:61–67

    CAS  Google Scholar 

  • Kim JO et al (2000) Cloning and characterization of thermostable endoglucanase (Cel8Y) from the hyperthermophilic Aquifex aeolicus VF5. Biochem Biophys Res Commun 279:420–426

    CAS  Google Scholar 

  • Kim S-J et al (2008) Characterization of a gene encoding cellulase from uncultured soil bacteria. FEMS Microbiol Lett 282:44–51

    CAS  Google Scholar 

  • Kim JN, Méndez-García C, Geier RR, Iakiviak M, Chang J, Cann I, Mackie RI (2017) Metabolic networks for nitrogen utilization in Prevotella ruminicola 23. Sci Rep 7:7851. https://doi.org/10.1038/s41598-017-08463-3

    Article  CAS  Google Scholar 

  • Kobayashi Y, Okuda N, Matsumoto M, Inoue K, Wakita M, Hoshino S (1998) Constitutive expression of a heterologous Eubacterium ruminantium xylanase gene (xynA) in Butyrivibrio fibrisolvens. FEMS Microbiol Lett 163:11–17. https://doi.org/10.1111/j.1574-6968.1998.tb13019.x

    Article  CAS  Google Scholar 

  • Koeck DE, Pechtl A, Zverlov VV, Schwarz WH (2014) Genomics of cellulolytic bacteria. Curr Opin Biotechnol 29:171–183

    CAS  Google Scholar 

  • Koike S, Kobayashi Y (2001) Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 204:361–366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x

    Article  CAS  Google Scholar 

  • Kostylev M, Wilson D (2014) A distinct model of synergism between a processive endocellulase (TfCel9A) and an exocellulase (TfCel48A) from Thermobifida fusca. Appl Environ Microbiol 80:339–344. https://doi.org/10.1128/aem.02706-13

    Article  CAS  Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    CAS  Google Scholar 

  • Kristjansson JK (1991) Thermophilic bacteria. CRC Press, Boca Raton

    Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res

  • Kurasin M, Väljamäe P (2011) Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 286:169–177. https://doi.org/10.1074/jbc.m110.161059

    Article  CAS  Google Scholar 

  • Kusube M, Sugihara A, Moriwaki Y, Ueoka T, Shimane Y, Minegishi H (2014) Alicyclobacillus cellulosilyticus sp. nov., a thermophilic, cellulolytic bacterium isolated from steamed Japanese cedar chips from a lumbermill. Int J Syst Evol Microbiol 64:2257

    CAS  Google Scholar 

  • Kyrpides NC et al (2014) Genomic encyclopedia of bacteria and Archaea: sequencing a myriad of type strains. PLoS Biol 12:e1001920. https://doi.org/10.1371/journal.pbio.1001920

    Article  CAS  Google Scholar 

  • La Grange DC, Claeyssens M, Pretorius IS, Van Zyl WH (2000) Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 54:195–200

    Google Scholar 

  • Ladeira SA, Cruz E, Delatorre AB, Barbosa JB, Leal Martins ML (2015) Cellulase production by thermophilic Bacillus sp: SMIA-2 and its detergent compatibility. Electron J Biotechnol 18:110–115

    CAS  Google Scholar 

  • Langston J, Sheehy N, Xu F (2006) Substrate specificity of Aspergillus oryzae family 3 β-glucosidase. Biochim Biophys Acta (BBA) Proteins Proteom 1764:972–978

    CAS  Google Scholar 

  • Lee B, Blackburn T (1975) Cellulase production by a thermophilic Clostridium species. Appl Environ Microbiol 30:346–353

    CAS  Google Scholar 

  • Lee RE Jr, Lee MR, Strong-Gunderson JM (1993) Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. J Insect Physiol 39:1–12

    Google Scholar 

  • Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS (2006) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300. https://doi.org/10.1007/s00792-005-0499-3

    Article  CAS  Google Scholar 

  • Lee CC, Kibblewhite RE, Wagschal K, Li R, Robertson GH, Orts WJ (2012) Isolation and characterization of a novel GH67 alpha-glucuronidase from a mixed culture. J Ind Microbiol Biotechnol 39:1245–1251. https://doi.org/10.1007/s10295-012-1128-7

    Article  CAS  Google Scholar 

  • Lee JP, Seo G-W, An S-D, Kim H (2017) A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region. J Appl Biol Chem 60:257–263

    Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  Google Scholar 

  • López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279. https://doi.org/10.1038/srep25279

    Article  CAS  Google Scholar 

  • Luo H et al (2010) Molecular cloning and characterization of the novel acidic xylanase XYLD from Bispora sp. MEY-1 that is homologous to family 30 glycosyl hydrolases. Appl Microbiol Biotechnol 86:1829–1839

    CAS  Google Scholar 

  • MacKenzie CR, Bilous D, Schneider H, Johnson KG (1987) Induction of cellulolytic and xylanolytic enzyme systems in Streptomyces spp. Appl Environ Microbiol 53:2835–2839

    CAS  Google Scholar 

  • Mahajan C, Basotra N, Singh S, Di Falco M, Tsang A, Chadha B (2016) Malbranchea cinnamomea: a thermophilic fungal source of catalytically efficient lignocellulolytic glycosyl hydrolases and metal dependent enzymes. Bioresour Technol 200:55–63

    CAS  Google Scholar 

  • Malburg S, Malburg L, Liu T, Iyo AH, Forsberg CW (1997) Catalytic properties of the cellulose-binding endoglucanase F from Fibrobacter succinogenes S85. Appl Environ Microbiol 63:2449–2453

    CAS  Google Scholar 

  • Martinez D et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553. https://doi.org/10.1038/nbt1403

    Article  CAS  Google Scholar 

  • Mattéotti C, Haubruge E, Thonart P, Francis F, De Pauw E, Portetelle D, Vandenbol M (2011) Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiol Lett 314:147–157

    Google Scholar 

  • Matthysse AG, Deschet K, Williams M, Marry M, White AR, Smith WC (2004) A functional cellulose synthase from ascidian epidermis. Proc Natl Acad Sci USA 101:986. https://doi.org/10.1073/pnas.0303623101

    Article  CAS  Google Scholar 

  • McSweeney C, Denman S, Wright A, Yu Z (2007) Application of recent DNA/RNA-based techniques in rumen ecology. Asian Aust J Anim Sci 20:283

    CAS  Google Scholar 

  • Médigue C et al (2005) Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Google Scholar 

  • Mhetras N, Liddell S, Gokhale D (2016) Purification and characterization of an extracellular β-xylosidase from Pseudozyma hubeiensis NCIM 3574 (PhXyl), an unexplored yeast. AMB Exp 6:73. https://doi.org/10.1186/s13568-016-0243-7

    Article  CAS  Google Scholar 

  • Mohammad BT, Al Daghistani HI, Jaouani A, Abdel-Latif S, Kennes C (2017) Isolation and characterization of thermophilic bacteria from Jordanian hot springs: Bacillus licheniformis and Thermomonas hydrothermalis isolates as potential producers of thermostable enzymes. Int J Microbiol 2017

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144

    CAS  Google Scholar 

  • Mukherjee S, Chandrababunaidu MM, Panda A, Khowala S, Tripathy S (2016) Tricking Arthrinium malaysianum into producing industrially important enzymes under 2-deoxy d-glucose treatment. Front Microbiol 7:596

    Google Scholar 

  • Nagy T, Nurizzo D, Davies GJ, Biely P, Lakey JH, Bolam DN, Gilbert HJ (2003) The alpha-glucuronidase, GlcA67A, of Cellvibrio japonicus utilizes the carboxylate and methyl groups of aldobiouronic acid as important substrate recognition determinants. J Biol Chem 278:20286–20292. https://doi.org/10.1074/jbc.m302205200

    Article  CAS  Google Scholar 

  • Najafi MF, Deobagkar D, Deobagkar D (2005) Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Exp Purif 41:349–354

    CAS  Google Scholar 

  • Nakagawa T, Ikehata R, Uchino M, Miyaji T, Takano K, Tomizuka N (2006) Cold-active acid beta-galactosidase activity of isolated psychrophilic-basidiomycetous yeast Guehomyces pullulans. Microbiol Res 161:75–79. https://doi.org/10.1016/j.micres.2005.07.003

    Article  CAS  Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma J-I (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Biol 32:777–784

    CAS  Google Scholar 

  • Ng TK, Ben-Bassat A, Zeikus J (1981) Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41:1337–1343

    CAS  Google Scholar 

  • Nocker A, Burr M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289

    CAS  Google Scholar 

  • Numan MT, Bhosle NB (2006) Alpha-L-arabinofuranosidases: the potential applications in biotechnology. J Ind Microbiol Biotechnol 33:247–260. https://doi.org/10.1007/s10295-005-0072-1

    Article  CAS  Google Scholar 

  • Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10:547–556. https://doi.org/10.1016/S0969-2126(02)00742-6

    Article  CAS  Google Scholar 

  • O’Hair JA, Li H, Rangu M, Thapa S, Yang Y, Fish T, Bhatti1 S, Thannhauser TW, Zhou S (2020) Proteomic effects of magnesium stress on biofilm associated proteins isolated from cellulolytic Bacillus licheniformis YNP5-TSU. J Proteom Bioinform 12(7)

  • Okeke BC, Hall RW, Nanjundaswamy A, Thomson MS, Deravi Y, Sawyer L, Prescott A (2015) Selection and molecular characterization of cellulolytic–xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites. Microbiol Res 175:24–33

    CAS  Google Scholar 

  • Okereke O, Akanya H, Egwim E (2017) Purification and characterization of an acidophilic cellulase from Pleurotus ostreatus and its potential for agrowastes valorization. Biocatal Agric Biotechnol 12:253–259

    Google Scholar 

  • O’sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Google Scholar 

  • Patel DD, Patel AK, Parmar NR, Shah TM, Patel JB, Pandya PR, Joshi CG (2014) Microbial and carbohydrate active enzyme profile of buffalo rumen metagenome and their alteration in response to variation in the diet. Gene 545:88–94. https://doi.org/10.1016/j.gene.2014.05.003

    Article  CAS  Google Scholar 

  • Patel AK, Singhania RR, Sim SJ, Pandey A (2019) Thermostable cellulases: current status and perspectives. Bioresour Technol 279:385–392

    CAS  Google Scholar 

  • Pechtl A et al (2018) Complete genome sequence of the novel cellulolytic, anaerobic, thermophilic bacterium Herbivorax saccincola type strain GGR1, isolated from a lab scale biogas reactor as established by Illumina and Nanopore MinION sequencing. Genome Announc 6:e01493-01417

    Google Scholar 

  • Petridis L, Smith JC (2018) Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat Rev Chem 1:382–389

    Google Scholar 

  • Pitson SM, Voragen AGJ, Beldman G (1996) Stereochemical course of hydrolysis catalyzed by arabinofuranosyl hydrolases. FEBS Lett 398:7–11. https://doi.org/10.1016/S0014-5793(96)01153-2

    Article  CAS  Google Scholar 

  • Pitt JI, Hocking AD (1997) Xerophiles. In: Pitt JI, Hocking AD (eds) Fungi and food spoilage. Springer, Berlin, pp 417–437

    Google Scholar 

  • Poindexter JS (1981) Oligotrophy. In: Nelson KE (ed) Advances in microbial ecology. Springer, Berlin, pp 63–89

    Google Scholar 

  • Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    CAS  Google Scholar 

  • Pollet A, Schoepe J, Dornez E, Strelkov SV, Delcour JA, Courtin CM (2010) Functional analysis of glycoside hydrolase family 8 xylanases shows narrow but distinct substrate specificities and biotechnological potential. Appl Microbiol Biotechnol 87:2125–2135. https://doi.org/10.1007/s00253-010-2659-3

    Article  CAS  Google Scholar 

  • Pope P et al (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci 107:14793–14798

    CAS  Google Scholar 

  • Pope PB et al (2012) Metagenomics of the Svalbard reindeer rumen microbiome reveals abundance of polysaccharide utilization loci. PLoS ONE 7:e38571

    CAS  Google Scholar 

  • Potts R, Hewitt P (1974) Some properties and reaction characteristics of the partially purified cellulase from the termite Trinervitermes trinervoides (Nasutitermitinae). Comp Biochem Physiol Part B Comp Biochem 47:327–337

    CAS  Google Scholar 

  • Poulsen HV, Willink FW, Ingvorsen K (2016) Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch Microbiol 198:725–735

    CAS  Google Scholar 

  • Puls J (1997) Chemistry and biochemistry of hemicelluloses: Relationship between hemicellulose structure and enzymes required for hydrolysis. Macromol Symp 120:183–196. https://doi.org/10.1002/masy.19971200119

    Article  CAS  Google Scholar 

  • Rajoka MI, Malik KA (1997) Cellulase production by Cellulomonas biazotea cultured in media containing different cellulosic substrates. Bioresour Technol 59:21–27

    CAS  Google Scholar 

  • Ren Z, Ward TE, Logan BE, Regan JM (2007) Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic Clostridium species. J Appl Microbiol 103:2258–2266. https://doi.org/10.1111/j.1365-2672.2007.03477.x

    Article  CAS  Google Scholar 

  • Rezaeian M, Beakes GW, Parker DS (2004) Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol Res 108:1227–1233

    Google Scholar 

  • Riou C, Salmon J-M, Vallier M-J, Günata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant β-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64:3607–3614

    CAS  Google Scholar 

  • Rodríguez Hernáez J et al (2018) The first complete genomic structure of Butyrivibrio fibrisolvens and its chromid. Microb Genom. https://doi.org/10.1099/mgen.0.000216

    Article  Google Scholar 

  • Rogowski A et al (2014) Evidence that GH115 alpha-glucuronidase activity, which is required to degrade plant biomass, is dependent on conformational flexibility. J Biol Chem 289:53–64. https://doi.org/10.1074/jbc.m113.525295

    Article  CAS  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092

    CAS  Google Scholar 

  • Rouland-Lefèvre C (2000) Symbiosis with fungi. In: Abe T, Bignell DE, Higashi M, Higashi T, Abe Y (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Berlin, pp 289–306

    Google Scholar 

  • Sahu N, Kamra D (2001) Rumen microbial eco-system of buffalo—a review. J Buffalo Sci Technol 7:70–82

    Google Scholar 

  • Sahu NP, Kamra DN (2002) Microbial eco-system of the gastro-intestinal tract of wild herbivorous animals. J Appl Anim Res. 21:207–230. https://doi.org/10.1080/09712119.2002.9706370

    Article  Google Scholar 

  • Sanchez S, Demain AL (2010) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Organ Process Res Dev 15:224–230

    Google Scholar 

  • Sá-Pereira P, Mesquita A, Duarte JC, Barros MRA, Costa-Ferreira M (2002) Rapid production of thermostable cellulase-free xylanase by a strain of Bacillus subtilis and its properties. Enzyme Microb Technol 30:924–933

    Google Scholar 

  • Sawanon S, Koike S, Kobayashi Y (2011) Evidence for the possible involvement of Selenomonas ruminantium in rumen fiber digestion. FEMS Microbiol Lett 325:170–179. https://doi.org/10.1111/j.1574-6968.2011.02427.x

    Article  CAS  Google Scholar 

  • Schultz TP, Biermann CJ, McGinnis GD (1983) Steam explosion of mixed hardwood chips as a biomass pretreatment. Ind Eng Chem Prod Res Dev 22:344–348

    CAS  Google Scholar 

  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60. https://doi.org/10.1016/j.phrs.2012.10.020

    Article  CAS  Google Scholar 

  • Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genom 15:1096. https://doi.org/10.1186/1471-2164-15-1096

    Article  CAS  Google Scholar 

  • Sethi S, Datta A, Gupta BL, Gupta S (2013) Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnol. https://doi.org/10.5402/2013/985685

    Article  Google Scholar 

  • Shahzadi T et al (2014) Advances in lignocellulosic biotechnology: a brief review on lignocellulosic biomass and cellulases. Adv Biosci Biotechnol 5:246

    Google Scholar 

  • Sharma M, Chadha B (2011) Production of hemicellulolytic enzymes for hydrolysis of lignocellulosic biomass biofuels, alternative feed stocks and conversion processes, 1st edn. Academic, Cambridge, pp 214–217

    Google Scholar 

  • Sharma A, Adhikari S, Satyanarayana T (2007) Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol 23:483–490

    CAS  Google Scholar 

  • Shen Y, Zhang Y, Ma T, Bao X, Du F, Zhuang G, Qu Y (2008) Simultaneous saccharification and fermentation of acid-pretreated corncobs with a recombinant Saccharomyces cerevisiae expressing β-glucosidase. Bioresour Technol 99:5099–5103. https://doi.org/10.1016/j.biortech.2007.09.046

    Article  CAS  Google Scholar 

  • Shi H et al (2018) Fusion endoglucanase Cel12B from Thermotoga maritima with cellulose binding domain. BioResources 13:4497–4508

    CAS  Google Scholar 

  • Singhania RR, Patel AK, Sukumaran RK, Larroche C, Pandey A (2013) Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour Technol 127:500–507

    CAS  Google Scholar 

  • Sinma K, Khucharoenphaisan K, Kitpreechavanich V, Tokuyama S (2011) Purification and characterization of a thermostable xylanase from Saccharopolyspora pathumthaniensis S582 isolated from the gut of a termite. Biosci Biotechnol Biochem 75:1108312635

    Google Scholar 

  • Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. Appl Microbiol Biotechnol 95:1135–1154

    CAS  Google Scholar 

  • Slaytor M (2000) Energy metabolism in the termite and its gut microbiota. In: Abe T, Bignell DE, Higashi M, Higashi T, Abe Y (eds) Termites: evolution, sociality, symbioses, ecology. Springer, Berlin, pp 307–332

    Google Scholar 

  • Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci 103:12115–12120

    CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    CAS  Google Scholar 

  • Sravanthi T, Tushar L, Sasikala C, Ramana CV (2016) Alkalispirochaeta cellulosivorans gen. nov., sp. nov., a cellulose-hydrolysing, alkaliphilic, halotolerant bacterium isolated from the gut of a wood-eating cockroach (Cryptocercus punctulatus), and reclassification of four species of Spirochaeta as new combinations within Alkalispirochaeta gen. nov. Int J Syst Evol Microbiol 66:1612–1619. https://doi.org/10.1099/ijsem.0.000865

    Article  CAS  Google Scholar 

  • Srivastava N et al (2018) Applications of fungal cellulases in biofuel production: advances and limitations. Renew Sustain Energy Rev 82:2379–2386

    CAS  Google Scholar 

  • Stern R, Jedrzejas MJ (2008) Carbohydrate polymers at the center of life’s origins: the importance of molecular processivity. Chem Rev 108:5061–5085. https://doi.org/10.1021/cr078240l

    Article  CAS  Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    CAS  Google Scholar 

  • Suen G et al (2011) The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS ONE 6:e18814–e18814. https://doi.org/10.1371/journal.pone.0018814

    Article  CAS  Google Scholar 

  • Sukharnikov LO, Cantwell BJ, Podar M, Zhulin IB (2011) Cellulases: ambiguous nonhomologous enzymes in a genomic perspective. Trends Biotechnol 29:473–479. https://doi.org/10.1016/j.tibtech.2011.04.008

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11. https://doi.org/10.1016/S0960-8524(01)00212-7

    Article  CAS  Google Scholar 

  • Sun J, Ding S, Peterson J (2013) Lignocellulolytic system of insects and their potential for viable biofuels biological conversion of biomass for fuels and chemicals: exploration from natural utilization systems. Royal Society of Chemistry, Cambridge, pp 195–222

    Google Scholar 

  • Tachaapaikoon C, Kyu KL, Ratanakhanokchai K (2006) Purification of xylanase from alkaliphilic Bacillus sp. K-8 by using corn husk column. Process Biochem 41:2441–2445

    CAS  Google Scholar 

  • Tarayre C et al (2014) Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere. World J Microbiol Biotechnol 30:1655–1660

    CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167. https://doi.org/10.1016/S0167-7799(97)01032-9

    Article  Google Scholar 

  • Thapa S et al (2019) Biochemical characteristics of microbial enzymes and their significance from industrial perspectives. Mol Biotechnol 61:579–601. https://doi.org/10.1007/s12033-019-00187-1

    Article  CAS  Google Scholar 

  • Thareja A, Puniya AK, Goel G, Nagpal R, Sehgal JP, Singh PK, Singh K (2006) In vitro degradation of wheat straw by anaerobic fungi from small ruminants. Arch Anim Nutr 60:412–417

    CAS  Google Scholar 

  • Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591. https://doi.org/10.1038/nrmicro1931

    Article  CAS  Google Scholar 

  • Tian L, Conway PM, Cervenka ND, Cui J, Maloney M, Olson DG, Lynd LR (2019) Metabolic engineering of Clostridium thermocellum for n-butanol production from cellulose. Biotechnol Biofuels 12:186

    Google Scholar 

  • Tokuda G, Lo N, Watanabe H (2005) Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol Entomol 30:372–380

    CAS  Google Scholar 

  • Trivedi N, Reddy C, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9:48–54. https://doi.org/10.1016/j.algal.2015.02.025

    Article  Google Scholar 

  • Umemoto Y, Shibata T, Araki T (2012) D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1, 3-xylan. Mar Biotechnol 14:10–20

    CAS  Google Scholar 

  • Vaishnav N et al (2018) Penicillium: the next emerging champion for cellulase production. Bioresour Technol Rep 2:131–140. https://doi.org/10.1016/j.biteb.2018.04.003

    Article  Google Scholar 

  • van den Broek LAM, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AGJ (2005) Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67:641–647. https://doi.org/10.1007/s00253-004-1850-9

    Article  CAS  Google Scholar 

  • Van Wyk JP (2001) Biotechnology and the utilization of biowaste as a resource for bioproduct development. Trends Biotechnol 19:172–177

    Google Scholar 

  • Varel VH (1989) Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe. Arch Microbiol 152:209–214

    CAS  Google Scholar 

  • Vega K, Villena GK, Sarmiento VH, Ludeña Y, Vera N, Gutiérrez-Correa M (2012) Production of alkaline cellulase by fungi isolated from an undisturbed rain forest of Peru. Biotechnol Res Int 2012:934325. https://doi.org/10.1155/2012/934325

    Article  CAS  Google Scholar 

  • Ventorino V et al (2016) Lignocellulose-adapted endo-cellulase producing Streptomyces strains for bioconversion of cellulose-based materials. Front Microbiol 7:2061

    Google Scholar 

  • Violot S et al (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348:1211–1224

    CAS  Google Scholar 

  • Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11-11 https://doi.org/10.1007/s13205-016-0584-6

  • Walker ND, McEwan NR, Wallace RJ (2005) A pepD-like peptidase from the ruminal bacterium, Prevotella albensis. FEMS Microbiol Lett 243:399–404. https://doi.org/10.1016/j.femsle.2004.12.032

    Article  CAS  Google Scholar 

  • Wallecha A, Mishra S (2003) Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochim Biophys Acta (BBA) Proteins Proteom 1649:74-84

  • Wang CM, Shyu CL, Ho SP, Chiou SH (2008) Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Lett Appl Microbiol 47:46–53

    CAS  Google Scholar 

  • Wang W et al (2014) Elucidation of the molecular basis for arabinoxylan-debranching activity of a thermostable family GH62 alpha-l-arabinofuranosidase from Streptomyces thermoviolaceus. Appl Environ Microbiol 80:5317–5329. https://doi.org/10.1128/aem.00685-14

    Article  Google Scholar 

  • Wang W et al (2016) Biochemical and structural characterization of a five-domain GH115 alpha-glucuronidase from the marine Bacterium Saccharophagus degradans 2-40T. J Biol Chem 291:14120–14133. https://doi.org/10.1074/jbc.m115.702944

    Article  CAS  Google Scholar 

  • Wang L, Zhang G, Xu H, Xin H, Zhang Y (2019) Metagenomic analyses of microbial and carbohydrate-active enzymes in the rumen of holstein cows fed different forage-to-concentrate ratios. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00649

    Article  Google Scholar 

  • Warnecke F et al (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560. https://doi.org/10.1038/nature06269

    Article  CAS  Google Scholar 

  • Wei J, Song Y (2001) Recent advances in study of lignin biosynthesis and manipulation. Acta Bot Sin 43:771–779

    CAS  Google Scholar 

  • Wellenbeck W, Mampel J, Naumer C, Knepper A, Neubauer P (2017) Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Eng Life Sci 17:1185–1194

    CAS  Google Scholar 

  • Whistler RL (1970) Hemicelluloses. Carbohydr Chem. Biochem 2:447–469

    Google Scholar 

  • Whistler RL, Masak E (1955) Enzymatic hydrolysis of Xylan1. J Am Chem Soc 77:1241–1243. https://doi.org/10.1021/ja01610a042

    Article  CAS  Google Scholar 

  • Wilhelm RC, Singh R, Eltis LD, Mohn WW (2019) Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J 13:413–429

    CAS  Google Scholar 

  • Wilkens C, Andersen S, Dumon C, Berrin J-G, Svensson B (2017) GH62 arabinofuranosidases: structure, function and applications. Biotechnol Adv 35:792–804. https://doi.org/10.1016/j.biotechadv.2017.06.005

    Article  CAS  Google Scholar 

  • Williams-Rhaesa AM, Rubinstein GM, Scott IM, Lipscomb GL, Poole FL, Kelly RM, Adams MW (2018) Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium. Caldicellulosiruptor bescii. Metab Eng Commun 7:e00073

    Google Scholar 

  • Wong K, Tan L, Saddler JN (1988) Multiplicity of beta-1, 4-xylanase in microorganisms: functions and applications. Microbiol Rev 52:305

    CAS  Google Scholar 

  • Wood TM, Wilson CA, McCrae SI, Joblin KN (1986) A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis. FEMS Microbiol Lett 34:37–40

    CAS  Google Scholar 

  • Woodward J (1984) Xylanases: functions, properties and applications. Top Enzyme Ferment Biotechnol 8:9–30

    CAS  Google Scholar 

  • Woodward J, Wiseman A (1982) Fungal and other β-d-glucosidases—their properties and applications Enzyme and Microbial Technology 4:73-79

  • Wright A-DG, Klieve AV (2011) Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim Feed Sci Technol 166:248–253

    Google Scholar 

  • Xu H, Han D, Xu Z (2015) Expression of heterologous cellulases in Thermotoga sp. strain RQ2. BioMed Res Int

  • Yamamoto H, Horii F (1993) CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26:1313–1317. https://doi.org/10.1021/ma00058a020

    Article  CAS  Google Scholar 

  • Yamamoto H, Horn F (1994) In Situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses Iαand Iβas revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy. Cellulose 1:57–66. https://doi.org/10.1007/bf00818798

    Article  CAS  Google Scholar 

  • Yang S-J et al (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe “Anaerocellum thermophilum” DSM 6725. Appl Environ Microbiol 75:4762–4769

    CAS  Google Scholar 

  • Yang B, Dai Z, Ding S-Y, Wyman CE (2011) Enzymatic hydrolysis of cellulosic biomass. Biofuels 2:421–449. https://doi.org/10.4155/bfs.11.116

    Article  CAS  Google Scholar 

  • Yang T, Guo Y, Gao N, Li X, Zhao J (2020) Modification of a cellulase system by engineering Penicillium oxalicum to produce cellulose nanocrystal. Carbohydr Polym 115862

  • Yarbrough JM et al (2017) Multifunctional cellulolytic enzymes outperform processive fungal cellulases for coproduction of nanocellulose and biofuels. ACS Nano 11:3101–3109

    CAS  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IK (2010) Thermostable enzymes as biocatalysts in the biofuel industry. In: Laskin AI, Bennett JW, Gadd GM (eds) Advances in applied microbiology, vol 70. Elsevier, Amsterdam, pp 1–55

    Google Scholar 

  • Yin L-J, Huang P-S, Lin H-H (2010) Isolation of cellulase-producing bacteria and characterization of the cellulase from the isolated bacterium Cellulomonas sp. YJ5. J Agric Food Chem 58:9833–9837

    CAS  Google Scholar 

  • Yoon KH, Yun HN, Jung KH (1998) Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product. Biochem Mol Biol Int 45:337–347

    CAS  Google Scholar 

  • Zeng R, Xiong P, Wen J (2006) Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles 10:79–82. https://doi.org/10.1007/s00792-005-0475-y

    Article  CAS  Google Scholar 

  • Zhang P, Hu H, Shi S (2006) Application of hemicellulose. Tianjin Pap Mak 2:16–18

    Google Scholar 

  • Zhilina TN, Appel R, Probian C, Brossa EL, Harder J, Widdel F, Zavarzin GA (2004) Alkaliflexus imshenetskii gen. nov. sp. nov., a new alkaliphilic gliding carbohydrate-fermenting bacterium with propionate formation from a soda lake. Arch Microbiol 182:244–253

    CAS  Google Scholar 

  • Zhilina T, Kevbrin V, Tourova T, Lysenko A, Kostrikina N, Zavarzin G (2005) Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal region. Microbiology 74:557–566

    CAS  Google Scholar 

  • Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54:79–87

    CAS  Google Scholar 

  • Zietsman AJ, de Klerk D, van Rensburg P (2011) Coexpression of α-l-arabinofuranosidase and β-glucosidase in Saccharomyces cerevisiae. FEMS Yeast Res 11:88–103

    CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Zhou.

Ethics declarations

Conflict of interest

The author declares no competing financial and nonfinancial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, S., Mishra, J., Arora, N. et al. Microbial cellulolytic enzymes: diversity and biotechnology with reference to lignocellulosic biomass degradation. Rev Environ Sci Biotechnol 19, 621–648 (2020). https://doi.org/10.1007/s11157-020-09536-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-020-09536-y

Keywords

Navigation