Skip to main content
Log in

Nodularin and cylindrospermopsin: a review of their effects on fish

  • Reviews
  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Nodularin (NOD) and cylindrospermopsin (CYN) are hepatotoxic cyanotoxins that are present in numerous ecosystems where bloom episodes occur. In this review, the different effects of both of these cyanotoxins on the different ontogenic stages of various fish species were summarised to clarify the state-of-the-art scientific knowledge on this topic. It is clear that fish that are exposed to NOD and CYN were negatively impacted in every studied ontogenic stage. Indeed, these cyanotoxins can accumulate in various organs of fish, leading to deleterious effects on the physiology. This review highlights the fact that all of the previously published studies on the topic have focused only on the short-term effects of a given cyanotoxin on fish. However, during cyanobacterial blooms, fish can be exposed chronically to a variety of toxic compounds with which the fish interact, leading to stronger effects than those observed with a single toxin tested over a short timeframe. Thus, it is essential to conduct additional studies to better understand the actual toxic effects of cyanobacterial blooms on fish populations over medium- and long-term time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amado L, Monserrat J (2010) Oxidative stress generation by microcystins in aquatic animals: why and how. Environ Int 36:226–235

    Article  CAS  PubMed  Google Scholar 

  • Azevedo SMF, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181–182:441–446

    Article  PubMed  Google Scholar 

  • Bernard C, Harvey M, Briand JF, Biré R, Krys S, Fontaine JJ (2003) Toxicological comparison of diverse Cylindrospermopsis raciborskii strains: evidence of liver damage caused by a French C. raciborskii strain. Environ Toxicol 18:176–186

    Article  CAS  PubMed  Google Scholar 

  • Berry JP, Gibbs PDL, Schmale MC, Saker ML (2009) Toxicity of cylindrospermopsin, and other apparent metabolites from Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum, to the zebrafish (Danio rerio) embryo. Toxicon 53:289–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Berry JP, Jaja-Chimedza A, Davalos-Lind L, Lind O (2012) Apparent bioaccumulation of cylindrospermopsin and paralytic shellfish toxins by finfish in Lake Catemaco (Veracruz, Mexico). Food Addit Contam A 29:37–41

    Article  Google Scholar 

  • Buynder G, Oughtred T, Kirkby B, Phillips S, Eaglesham G, Thomas K, Burch M (2001) Nodularin uptake by seafood during a cyanobacterial Bloom. Environ Toxicol 16:468–471

    Article  PubMed  Google Scholar 

  • Campos A, Vasconcelos V (2010) Molecular mechanisms of microcystin toxicity in animal cells. Int J Mol Sci 11:268–287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chorus I, Bartram J (eds) (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E & FN Spon, London, p 416

  • Codd GA, Morrison LF, Metcalf JS (2005) Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharm 203:264–272

    Article  CAS  Google Scholar 

  • Di Giulio R, Hinton D (2008) The toxicology of fishes. Taylor & Francis, London, p 1096

    Book  Google Scholar 

  • Engström-Öst J, Lehtiniemi M, Green S, Kozlowsky-Suzuki B, Viitasalo M (2002) Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? J Exp Mar Biol Ecol 276:95–107

    Article  Google Scholar 

  • Falconer IR, Humpage AR (2006) Cyanobacterial (Blue-Green Algal) toxins in water supplies: cylindrospermopsins. Environ Toxicol 21:299–304

    Article  CAS  PubMed  Google Scholar 

  • Ferrão-Filho ADS, Kozlowsky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772

    Article  PubMed Central  Google Scholar 

  • Fladmark KE, Serres MH, Larsen NL, Yasumoto T, Aune T, Døskeland SO (1998) Sensitive detection of apoptogenic toxins in suspension cultures of rat and salmon hepatocytes. Toxicon 36:1101–1114

    Article  CAS  PubMed  Google Scholar 

  • Froscio SM, Humpage AR, Burcham PC, Falconer IR (2003) Cylindrospermopsin-induced protein synthesis inhibition and its dissociation from acute toxicity in mouse hepatocytes. Environ Toxicol 18:243–251

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Praena D, Jos A, Pichardo S, Cameán AM (2011a) Oxidative stress responses in tilapia (Oreochromis niloticus) exposed to a single dose of pure cylindrospermopsin under laboratory conditions: influence of exposure route and time of sacrifice. Aquat Toxicol 105:100–106

    Article  PubMed  Google Scholar 

  • Gutiérrez-Praena D, Pichardo S, Jos A, Cameán AM (2011b) Toxicity and glutathione implication in the effects observed by exposure of the liver fish cell line PLHC-1 to pure cylindrospermopsin. Ecotox Environ Safe 74:1567–1572

    Article  Google Scholar 

  • Gutiérrez-Praena D, Jos A, Pichardo S, Moyano R, Blanco A, Monterde JG, Cameán AM (2012) Time-dependent histopathological changes induced in tilapia (Oreochromis niloticus) after acute exposure to pure cylindrospermopsin by oral and intraperitoneal route. Ecotox Environ Safe 76:102–113

    Article  Google Scholar 

  • Gutiérrez-Praena D, Jos A, Pichardo S, Moreno IM, Cameán AM (2013a) Presence and bioaccumulation of microcystins and cylindrospermopsin in food and the effectiveness of some cooking techniques at decreasing their concentrations: a review. Food Chem Toxicol 53:139–152

    Article  PubMed  Google Scholar 

  • Gutiérrez-Praena D, Jos A, Pichardo S, Puerto M, Cameán AM (2013b) Influence of the exposure way and the time of sacrifice on the effects induced by a single dose of pure Cylindrospermopsin on the activity and transcription of glutathione peroxidase and glutathione-S-transferase enzymes in tilapia (Oreochromis niloticus). Chemosphere 90:986–992

    Article  PubMed  Google Scholar 

  • Guzmán-Guillén R, Prieto AI, Vasconcelos VM, Cameán AM (2013a) Cyanobacterium producing cylindrospermopsin cause oxidative stress at environmentally relevant concentrations in sub-chronically exposed tilapia (Oreochromis niloticus). Chemosphere 90:1184–1194

    Article  PubMed  Google Scholar 

  • Guzmán-Guillén R, Prieto AI, Vázquez CM, Vasconcelos V, Cameán AM (2013b) The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). Aquat Toxicol 132–133:141–150

    Article  PubMed  Google Scholar 

  • Ibelings B, Havens K (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. Adv Exp Med Biol 619:675–732

    Article  CAS  PubMed  Google Scholar 

  • Kankaanpää H, Vuorinen PJ, Sipiä V, Keinänen M (2002) Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat Toxicol 61:155–168

    Article  PubMed  Google Scholar 

  • Kankaanpää H, Turunen AK, Karlsson K, Bylund G, Meriluoto J, Sipiä V (2005) Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59:1091–1097

    Article  PubMed  Google Scholar 

  • Karjalainen M (2005) Fate and effects of Nodularia spumigena and its toxin, nodularin, in Baltic Sea planktonic food webs. 34 pp

  • Karjalainen M, Reinikainen M, Spoof L, Meriluoto JAO, Sivonen K, Viitasalo M (2005) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ Toxicol 20:354–362

    Article  CAS  PubMed  Google Scholar 

  • Karjalainen M, Engström-Ost J, Korpinen S, Peltonen H, Pääkkönen JP, Rönkkönen S, Suikkanen S, Viitasalo M (2007) Ecosystem consequences of cyanobacteria in the northern Baltic Sea. Ambio 36:195–202

    Article  CAS  PubMed  Google Scholar 

  • Karjalainen M, Pääkkönen JP, Peltonen H, Sipiä V, Valtonen T, Viitasalo M (2008) Nodularin concentrations in Baltic Sea zooplankton and fish during a cyanobacterial bloom. Mar Biol 155:483–491

    Article  Google Scholar 

  • Karlsson K, Sipiä V, Krause E, Meriluoto J, Pflugmacher S (2003) Mass spectrometric detection and quantification of nodularin-R in flounder livers. Environ Toxicol 18:284–288

    Article  CAS  PubMed  Google Scholar 

  • Kinnear S (2010) Cylindrospermopsin: a decade of progress on bioaccumulation. Mar Drugs 8:542–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshw Biol 52:199–214

    Article  CAS  Google Scholar 

  • Liebel S, Oliveira Ribeiro CA, Silva RC, Ramsdorf WA, Cestari MM, Magalhães VF, Garcia JRE, Esquivel BM, Filipak Neto F (2011) Cellular responses of Prochilodus lineatus hepatocytes after cylindrospermopsin exposure. Toxicol In Vitro 25:1493–1500

    Article  CAS  PubMed  Google Scholar 

  • Looper RE, Runnegar MTC, Williams RM (2005) Synthesis of the putative structure of 7-deoxycylindrospermopsin: C7 oxygenation is not required for the inhibition of protein synthesis. Angew Chem 44:3879–3881

    Article  CAS  Google Scholar 

  • MacKintosh RW, Dalby KN, Campbell DG, Cohen PTW, Cohen P, MacKintosh C (1995) The cyanobacterial toxin microcystin binds covalently to cysteine-273 on protein phosphatase 1. FEBS Lett 371:236–240

    Article  CAS  PubMed  Google Scholar 

  • Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. Environ Toxicol Chem 25:72–86

    Article  CAS  PubMed  Google Scholar 

  • Martins J, Vasconcelos V (2009) Microcystin dynamics in aquatic organisms. J Toxicol Environ Health B 12:65–82

    Article  Google Scholar 

  • Mazur-marzec H, Tyminska A, Szafranek J, Plinski M (2007) Accumulation of nodularin in sediments, mussels, and fish from the gulf of Gdansk, southern Baltic Sea. Environ Toxicol 4:101–111

    Article  Google Scholar 

  • Messineo V, Melchiorre S, Corcia AD, Gallo P, Bruno M (2009) Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, Central Italy. Environ Toxicol 25:18–27

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Pääkkönen JP, Rönkkönen S, Karjalainen M, Viitasalo M (2008) Physiological effects in juvenile three-spined sticklebacks feeding on toxic cyanobacterium Nodularia spumigena-exposed zooplankton. J Fish Biol 72:485–499

    Article  Google Scholar 

  • Paerl HW, Paul VJ (2011) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363

    Article  PubMed  Google Scholar 

  • Paskerová H, Hilscherová K, Bláha L (2012) Oxidative stress and detoxification biomarker responses in aquatic freshwater vertebrates exposed to microcystins and cyanobacterial biomass. Environ Sci Pollut R 19:2024–2037

    Article  Google Scholar 

  • Pearson L, Mihali T, Moffit M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Persson KJ, Legrand C, Olsson T (2009) Detection of nodularin in European flounder (Platichthys flesus) in the west coast of Sweden: evidence of nodularin mediated oxidative stress. Harmful Algae 8:832–838

    Article  CAS  Google Scholar 

  • Puerto M, Jos A, Pichardo S, Gutiérrez-Praena D, Cameán AM (2011) Acute effects of pure cylindrospermopsin on the activity and transcription of antioxidant enzymes in tilapia (Oreochromis niloticus) exposed by gavage. Ecotoxicology 20:1852–1860

    Article  CAS  PubMed  Google Scholar 

  • Puerto M, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2012a) Acute exposure to pure cylindrospermopsin results in oxidative stress and pathological alterations in tilapia (Oreochromis niloticus). Environ Toxicol 29:371–385

    Article  PubMed  Google Scholar 

  • Puerto M, Jos A, Pichardo S, Moyano R, Blanco A, Cameán AM (2012b) Acute exposure to pure cylindrospermopsin results in oxidative stress and pathological alterations in tilapia (Oreochromis niloticus). Environ Toxicol 29:371–385

  • Rinehart KL, Harada K, Namikoshi M, Chen C, Harvis CA, Munro MHG, Blunt JW, Mulligan PE, Beasley VR, Dahlem AM, Carmichael WW (1988) Nodularin, microcystin and the configuration of ADDA. J Am Chem Soc 110:8557–8558

    Article  CAS  Google Scholar 

  • Rücker J, Stüken A, Nixdorf B, Fastner J, Chorus I, Wiedner C (2007) Concentrations of particulate and dissolved cylindrospermopsin in 21 Aphanizomenon-dominated temperate lakes. Toxicon 50:800–809

    Article  PubMed  Google Scholar 

  • Runnegar MT, Kong SM, Zhong YZ, Ge JL, Lu SC (1994) The role of glutathione in the toxicity of a novel cyanobacterial alkaloid cylindrospermopsin in cultured rat hepatocytes. Biochem Biophys Res Commun 201:235–241

  • Saker ML, Eaglesham GK (1999) The accumulation of cylindrospermopsin from the cyanobacterium Cylindrospermopsis raciborskii in tissues of the redclaw crayfish Cherax quadricarinatus. Toxicon 37:1065–1077

    Article  CAS  PubMed  Google Scholar 

  • Sipiä V, Kankaanpää H, Lahti K, Carmichael WW, Meriluoto JA (2001a) Detection of nodularin in flounders and cod from the Baltic Sea. Environ Toxicol 16:121–126

    Article  PubMed  Google Scholar 

  • Sipiä VO, Kankaanpää HT, Flinkman J, Lahti K, Meriluoto JA (2001b) Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from the northern Baltic Sea. Environ Toxicol 16:330–336

    Article  PubMed  Google Scholar 

  • Sipiä VO, Kankaanpää HT, Pflugmacher S, Flinkman J, Furey A, James KJ (2002) Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea. Ecotox Environ Safe 53:305–311

    Article  Google Scholar 

  • Sipiä VO, Sjövall O, Valtonen T, Barnaby DL, Codd GA, Metcalf JS, Kilpi M, Mustonen O, Meriluoto JAO (2006) Analysis of nodularin-R in eider (Somateria mollissima), roach (Rutilus rutilus L.), and flounder (Platichthys flesus L.) liver and muscle samples from the western Gulf of Finland, northern Baltic Sea. Environ Toxicol Chem 25:2834–2839

    Article  PubMed  Google Scholar 

  • Sipiä V, Kankaanpää H, Peltonen H, Vinni M, Meriluoto JA (2007) Transfer of nodularin to three-spined stickleback (Gasterosteus aculeatus L.), herring (Clupea harengus L.), and salmon (Salmo salar L.) in the northern Baltic Sea. Ecotox Environ Safe 66:421–425

    Article  Google Scholar 

  • Stewart I, Eaglesham GK, McGregor GB, Chong R, Seawright AA, Wickramasinghe WA, Sadler R, Hunt L, Graham G (2012) First report of a toxic Nodularia spumigena (Nostocales/Cyanobacteria) bloom in sub-tropical Australia. II. Bioaccumulation of nodularin in isolated populations of mullet (Mugilidae). Int J Environ Res Pub Health 9:2412–2443

    Article  Google Scholar 

  • Van Apeldoorn ME, Van Egmond HP, Speijers GJA, Bakker GJI (2007) Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60

    Article  PubMed  Google Scholar 

  • Vuorinen PJ, Sipiä VO, Karlsson K, Keinänen M, Furey A, Allis O, James K, Perttilä U, Rimaila-Pärnänen E, Meriluoto JAO (2009) Accumulation and effects of nodularin from a single and repeated oral doses of cyanobacterium Nodularia spumigena on flounder (Platichthys flesus L.). Arch Environ Contam Toxicol 57:164–173

    Article  CAS  PubMed  Google Scholar 

  • Wiegand C, Pflugmacher S (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol Appl Pharmacol 203:201–218

    Article  CAS  PubMed  Google Scholar 

  • Zegura B, Straser A, Filipic M (2011) Genotoxicity and potential carcinogenicity of cyanobacterial toxins—a review. Mutat Res 727:16–41

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Shao D, Wu Y, Cai C, Hu C, Shou X, Dai B, Ye B, Wang M, Jia X (2012) Apoptotic responses of Carassius auratus lymphocytes to nodularin exposure in vitro. Fish Shellfish Immunol 33:1229–1237

    Article  PubMed  Google Scholar 

  • Zurawell RW, Chen H, Burke JM, Prepas EE (2005) Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health B 8:1–37

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Sotton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotton, B., Domaizon, I., Anneville, O. et al. Nodularin and cylindrospermopsin: a review of their effects on fish. Rev Fish Biol Fisheries 25, 1–19 (2015). https://doi.org/10.1007/s11160-014-9366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11160-014-9366-6

Keywords

Navigation