Skip to main content
Log in

Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Synthesis of melamine glyoxal resin involves a catalyst-free, one pot reaction between melamine and glyoxal in DMF. The synthesized resins have a similar morphological arrangement to that of layered materials as depicted by their XRD pattern and Raman spectra. The catalytic behavior of melamine glyoxal resin (MGR) have been studied in allylic oxidation of cyclohexene and simultaneous Michael addition. The MGR/solvent/O2 oxidant system can be regarded as a metal-free, additive-free, cost-effective and environmentally benign catalytic system. The oxidative behavior of MGR is attributed to its ability to generate in situ organic peroxide species during the course of reaction. Generation of peroxide species is confirmed by the KI/starch test and further confirmed by the complete suppression effect of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) over oxidation. The activity for Michael addition can be attributed to the presence of a higher content of nitrogen atoms, which serves as the active site. In oxidation, 28.1% conversion of cyclohexene with 37.19 and 62.81% selectivities for cyclohexenol and cyclohexenone were observed, respectively. In consecutive oxidation and oxy-Michael addition, 31.5% conversion of cyclohexene was observed with selectivities of 61.6% for cyclohexenone and 38.4% for alkoxy product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. W. Adam, C.R. Saha-Moller, P.A. Ganeshpure, Chem. Rev. 101, 3499 (2001)

    Article  CAS  Google Scholar 

  2. T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 105, 2329 (2005)

    Article  CAS  Google Scholar 

  3. R.A. Sheldon, J.K. Kochi, Metal Catalyzed Oxidations of Organic Compounds (Academic Press, New York, 1981)

    Google Scholar 

  4. L.I. Simandi, Catalytic Activation of Dioxygen by Metal Complexes (Kluwer Academic Publishers, Dodrecht, 1992)

    Google Scholar 

  5. J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology (Blackwell, Malden, 2002)

    Book  Google Scholar 

  6. B.M. Trost, Science 254, 1471 (1991)

    Article  CAS  Google Scholar 

  7. G. ten Brink, I.W.C.E. Arends, R.A. Sheldon, Science 287, 1636 (2000)

    Article  Google Scholar 

  8. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548 (1998)

    Article  CAS  Google Scholar 

  9. Sujandi, S.-E. Park, D.-S. Han, S.-C. Han, M.-J. Jin, T. Ohsuna, Chem. Commun. 39, 413 (2006)

    Google Scholar 

  10. E.A. Prasetyanto, S.-C. Lee, S.-M. Jeong, S.-E. Park, Chem. Commun. 17, 1995 (2008)

    Article  Google Scholar 

  11. P. Ferreira, W. Hayes, E. Phillips, D. Rippon, S.C. Tsang, Green Chem. 6, 310 (2004)

    Article  CAS  Google Scholar 

  12. J.-Q. Wang, L.-N. He, C.-X. Miao, Green Chem. 11, 1013 (2009)

    Article  CAS  Google Scholar 

  13. G. Nemli, M. Usta, Build. Environ. 39, 567 (2004)

    Article  Google Scholar 

  14. R.C. Dante, D.A. Santamaria, J. Martín Gil, J. Appl. Polym. Sci. 114, 4059 (2009)

    Article  CAS  Google Scholar 

  15. Y. Shinagawa, Y. Shinagawa, J. Electron Microsc. 27, 13 (1978)

    CAS  Google Scholar 

  16. M.G. Schwab, B. Fassbender, H.W. Spiess, A. Thomas, X. Feng, K. Mullen, J. Am. Chem. Soc. 131, 7216 (2009)

    Article  CAS  Google Scholar 

  17. B. Weber, W. Bremser, K. Hiltrop, Prog. Org. Coat. 64, 150 (2009)

    Article  CAS  Google Scholar 

  18. H.-L. Liu, H.-F. Jiang, Y.-G. Wang, Chin. J. Chem. 25, 1023 (2007)

    Article  CAS  Google Scholar 

  19. T. Kano, Y. Tanaka, K. Maruoka, Tetrahedron Lett. 47, 3039 (2006)

    Article  CAS  Google Scholar 

  20. J.U. Kim, B.-J. Lee, Y.-S. Kwon, Mol. Cryst. Liq. Cryst. 349, 251 (2000)

    Article  CAS  Google Scholar 

  21. Z. Zhang, K. Leinenweber, M. Bauer, L.A.J. Garvie, P.F. Mc Millan, G.H. Wolf, J. Am. Chem. Soc. 123, 7788 (2001)

    Article  CAS  Google Scholar 

  22. T. Komatsu, Macromol. Chem. Phys. 202, 19 (2001)

    Article  CAS  Google Scholar 

  23. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Muller, R. Schlogl, J.M. Carlssonc, J. Mater. Chem. 18, 4893 (2008)

    Article  CAS  Google Scholar 

  24. J.R. Peller, S.P. Mezyk, S. Valle, W.J. Cooper, Res. Chem. Intermed. 35, 21 (2009)

    Article  CAS  Google Scholar 

  25. D. Carteau, P. Pichat, Res. Chem. Intermed. doi:10.1007/s11164-010-0124-7 (2010)

  26. Sujandi, S.-E. Park, Res. Chem. Intermed. 34, 871 (2008)

    Article  CAS  Google Scholar 

  27. A.C. Blanc, D.J. Macquarrie, S. Valle, G. Renard, C.R. Quinn, D. Brunel, Green Chem. 2, 283 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge KOSEF for A3, NRL (36379-1), BK21 projects and MOCIE for Nano Center for Fine Chemicals Fusion Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Eon Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, M.B., Prasetyanto, E.A., Lee, J. et al. Catalytic behavior of melamine glyoxal resin towards consecutive oxidation and oxy-Michael addition. Res Chem Intermed 36, 677–684 (2010). https://doi.org/10.1007/s11164-010-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0169-7

Keywords

Navigation