Skip to main content
Log in

Inhibitive effect of chloroquine towards corrosion of mild steel in hydrochloric acid solution

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Corrosion inhibition of mild steel (MS) by chloroquine (CQ) in 1 M HCl was investigated using weight loss, polarization, electrochemical impedance spectroscopy (EIS) and quantum chemical techniques. The inhibitor showed 99 % inhibition efficiency at concentration of 3.1 × 10−4 M. Polarization studies showed that CQ is a mixed-type inhibitor. Adsorption of inhibitor molecules on the MS surface showed Langmuir adsorption isotherm. Thermodynamic parameters led to the conclusion that adsorption is predominantly chemisorption. Quantum chemical calculations were carried out to investigate the corrosion-inhibiting property of CQ. Various parameters such as energy of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), softness of molecule, Mullikan charges on various atoms and number of electrons transferred from inhibitor molecule to metal were calculated and correlated with the inhibiting property of CQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Lagrenee, B. Mernari, M. Bouanis, M. Traisnel, F. Bentiss, Study of the mechanism and inhibiting efficiency of 3,5-bis(4-methylthiophenyl)-4H-1,2,4-triazole on mild steel corrosion in acidic media. Corros. Sci. 44, 573 (2002)

    Article  CAS  Google Scholar 

  2. M. Abdallah, H.E. Megahed, A.M. Atia, Pyridine derivatives as corrosion inhibitors for dissolution of iron electrode in tartaric acid. J. Electrochem. Soc. India 35, 47 (1998)

    Google Scholar 

  3. M.A. Quraishi, M.Z.A. Rafiquee, S. Khan, N. Saxena, J. Appl. Electrochem. 37, 1153 (2007)

    Article  CAS  Google Scholar 

  4. F. Bentiss, M. Lebrini, H. Vezin, M. Lagrenee, Mater. Chem. Phys. 87, 18 (2004)

    Article  CAS  Google Scholar 

  5. A. Popova, E. Sokolova, S. Raicheva, M. Christov, AC and DC study of the temperature effect on mild steel corrosion in acid media in the presence of benzimidazole derivatives. Corros. Sci. 45, 33 (2003)

    Article  Google Scholar 

  6. A.K. Singh, M.A. Quraishi, Investigation of the effect of disulfiram on corrosion of mild steel in hydrochloric acid solution. Corros. Sci. 53, 1288 (2011)

    Article  CAS  Google Scholar 

  7. A.K. Singh, M.A. Quraishi, Adsorption properties and inhibition of mild steel corrosion in hydrochloric acid solution by ceftobiprole. J. Appl. Electrochem. 41, 7–18 (2011)

    Article  CAS  Google Scholar 

  8. A.K. Singh, M.A. Quraishi, E.E. Ebenso, Inhibitive effect of cefuroxime on the corrosion of mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 6, 5676 (2011)

    CAS  Google Scholar 

  9. A.K. Singh, M.A. Quraishi, Effect of cefazolin on the corrosion of mild steel in HCl solution. Corros. Sci. 52, 152 (2010)

    Article  CAS  Google Scholar 

  10. A.K. Singh, E.E. Ebenso, M.A. Quraishi, Adsorption behaviour of cefapirin on mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 7, 2320 (2012)

    CAS  Google Scholar 

  11. A.K. Singh, M.A. Quraishi, Inhibitive effect of diethylcarbamazine on the corrosion of mild steel in hydrochloric acid, Corros. Sci. 52, 1529 (2010) 

    Google Scholar 

  12. A.K. Singh, E.E. Ebenso, Effect of ceftezole on the corrosion of mild steel in HCl solution. Int. J. Electrochem. Sci. 7, 2349 (2012)

    CAS  Google Scholar 

  13. G. Moretti, F. Guidi, G. Grion, Tryptamine as a green iron corrosion inhibitor in 0.5 M deaerated sulphuric acid. Corros. Sci. 46, 387 (2004)

    Article  CAS  Google Scholar 

  14. F.C. Giacomelli, C. Giacomelli, M.F. Amadori, V. Schmidt, A. Spinelli, Inhibitor effect of succinic acid on the corrosion resistance of mild steel: electrochemical, gravimetric and optical microscopic studies. Mater. Chem. Phys. 83, 124 (2004)

    Article  CAS  Google Scholar 

  15. E.S. Ferreira, C. Giacomelli, F.C. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel. Mater. Chem. Phys. 83, 129 (2004)

    Article  CAS  Google Scholar 

  16. E.E.F. El Sherbini, Sulphamethoxazole as an effective inhibitor for the corrosion of mild steel in 1.0 M HCl solution. Mater. Chem. Phys. 61, 223 (1999)

    Article  CAS  Google Scholar 

  17. M.S. Morad, Inhibition of iron corrosion in acid solutions by cefatrexyl: behaviour near and at the corrosion potential. Corros. Sci. 50, 436 (2008)

    Article  CAS  Google Scholar 

  18. M. Abdallah, Antibacterial drugs as corrosion inhibitors for corrosion of aluminium in hydrochloric solution. Corros. Sci. 4(6), 2004 (1981)

    Google Scholar 

  19. S. Martinez, M.M. Huksovic, A nonlinear kinetic model introduced for the corrosion inhibitive properties of some organic inhibitors. J. Appl. Elecrochem. 33, 1137 (2003)

    Article  CAS  Google Scholar 

  20. A.K. Singh, M.A. Quraishi, Study of some bidentate schiff bases of isatin as corrosion inhibitors for mild steel in hydrochloric acid solution. Int. J. Electrochem. Sci. 7, 3222 (2012)

    CAS  Google Scholar 

  21. C. Deslouis, B. Tribollet, G. Mengoli, M.M. Musiani, Electrochemical behaviour of copper in neutral aerated chloride solution. I. Steady-state investigation. J. Appl. Electrochem. 18, 374 (1988)

    Article  CAS  Google Scholar 

  22. A.K. Singh, M.A. Quraishi, Inhibiting effects of 5-substituted isatin-based Mannich bases on the corrosion of mild steel in hydrochloric acid solution. J. Appl. Electrochem. 40, 1293 (2010)

    Article  CAS  Google Scholar 

  23. A.K. Singh, M.A. Quraishi, The effect of some bis-thiadiazole derivatives on the corrosion of mild steel in hydrochloric acid. Corros. Sci. 52, 1373 (2010)

    Article  CAS  Google Scholar 

  24. V.P. Singh, P. Singh, A.K. Singh, Synthesis, structural and corrosion inhibition studies on cobalt(II), nickel(II), copper(II) and zinc(II) complexes with 2-acetylthiophene benzoylhydrazone. Inorg. Chim. Acta 379, 56 (2011)

    Article  CAS  Google Scholar 

  25. A.K. Singh, Inhibition of mild steel corrosion in hydrochloric acid solution by 3-(4-((Z)-indolin-3-ylideneamino)phenylimino)indolin-2-one. Ind. Eng. Chem. Res. 51, 3215 (2012)

    Article  CAS  Google Scholar 

  26. A.K. Singh, M.A. Quraishi, Investigation of adsorption of isoniazid derivatives at mild steel/hydrochloric acid interface: electrochemical and weight loss methods. Mater. Chem. Phys. 123, 666 (2010)

    Article  CAS  Google Scholar 

  27. A.K. Singh, S.K. Shukla, M. Singh, M.A. Quraishi, Inhibitive effect of ceftazidime on corrosion of mild steel in hydrochloric acid solution. Mater. Chem. Phys. 129, 68 (2011)

    Article  CAS  Google Scholar 

  28. M.A. Quraishi, A. Singh, V. Singh, D.K. Yadav, A.K. Singh, Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid solutions by the extract of Murraya koenigii leaves. Mater. Chem. Phys. 122, 114 (2010)

    Article  CAS  Google Scholar 

  29. J. Flis, T. Zakroczymski, Impedance study of reinforcing steel in simulated pore solution with tannin. J. Electrochem. Soc. 143, 2458 (1996)

    Article  CAS  Google Scholar 

  30. M. Stern, A.L. Geary, Electrochemical polarization. J. Electrochem. Soc. 104, 56 (1957)

    Article  CAS  Google Scholar 

  31. G.K. Gomma, M.H. Wahdan, Schiff bases as corrosion inhibitors for aluminium in hydrochloric acid solution. Mater. Chem. Phys. 39, 209 (1955)

    Article  Google Scholar 

  32. M. Abdallah, Rhodanine azosulpha drugs as corrosion inhibitors for corrosion of 304 stainless steel in hydrochloric acid solution. Corros. Sci. 44, 717 (2002)

    Article  CAS  Google Scholar 

  33. A.K. Singh, S.K. Shukla, M.A. Quraishi, E.E. Ebenso, Investigation of adsorption characteristics of N,N′-[(methylimino)dimethylidyne]di-2,4-xylidine as corrosion inhibitor at mild steel/sulphuric acid interface. J. Taiwan Inst. Chem. Eng. (2011). doi:10.1016/j.jtice.2011.10.012

    Google Scholar 

  34. B. Donnely, T.C. Downie, R. Grzeskowiak, H.R. Hamburg, D. Short, The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl RCSNH2 and related compounds on inhibition efficiency. Corros. Sci. 18, 109 (1978)

    Article  Google Scholar 

  35. F. Bentiss, C. Jama, B. Mernari, H.E. Attari, L.E. Kadi, M. Lebrini, M. Traisnel, M. Lagrenée, Corrosion control of mild steel using 3,5-bis(4-methoxyphenyl)-4-amino-1,2,4-triazole in normal hydrochloric acid medium. Corros. Sci. 51, 1628 (2009)

    Article  CAS  Google Scholar 

  36. S. Muralidharan, M.A. Quraishi, S.K.V. Iyer, The effect of molecular structure on hydrogen permeation and the corrosion inhibition of mild steel in acidic solutions. Corros. Sci. 37, 1739 (1995)

    Article  CAS  Google Scholar 

  37. A.K. Singh, M.A. Quraishi, Effect of 2,2′ benzothiazolyl disulfide on the corrosion of mild steel in acid media. Corros. Sci. 51, 2752 (2009)

    Article  CAS  Google Scholar 

  38. D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao, Z. Chen, Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives. Corros. Sci. 41, 1911 (1999)

    Article  CAS  Google Scholar 

  39. G. Bereket, C. Ogretir, C. Ozsahin, Quantum chemical studies on the inhibition efficiencies of some piperazine derivatives for the corrosion of steel in acidic medium. J. Mol. Struct. (THEOCHEM) 663, 39 (2003)

    Article  CAS  Google Scholar 

  40. R.M. Issa, M.K. Awed, F.M. Atlam, Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Appl. Surf. Sci. 255, 2433 (2008)

    Article  CAS  Google Scholar 

  41. V.S. Sastri, J.R. Perumareddi, Molecular orbital theoretical studies of some organic corrosion inhibitors. Corrosion 53, 671 (1996)

    Google Scholar 

  42. T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica 1, 104 (1934)

    Article  Google Scholar 

  43. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry; Introduction to Advanced Electronic Structure, Dover, 49 (1996)

  44. C.T. Wang, S.H. Chen, H.Y. Ma, C.-S. Qi, Protection of copper corrosion by carbazole and N-vinylcarbazole self-assembled films in NaCl solution. J. Appl. Electrochem. 33, 179 (2003)

    Article  CAS  Google Scholar 

  45. J. Fang, J. Li, Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides. J. Mol. Struct. (Theochem) 593, 179 (2002)

    Article  CAS  Google Scholar 

  46. P. Zhao, Q. Liang, Y. Li, Electrochemical, SEM/EDS and quantum chemical study of phthalocyanines as corrosion inhibitors for mild steel in 1 mol/l HCl. J. Appl. Surf. Sci. 252, 1596 (2005)

    Article  CAS  Google Scholar 

  47. A.H. Mehaute, G. Grepy, Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ionic 9, 17 (1989)

    Google Scholar 

  48. L. Tang, X. Li, L. Li, G. Mu, G. Liu, Interfacial behavior of 4-(2-pyridylazo) resorcin between steel and hydrochloric acid. Surf. Coat. Technol. 201, 384 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ashish Kumar Singh or M. A. Quraishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A.K., Khan, S., Singh, A. et al. Inhibitive effect of chloroquine towards corrosion of mild steel in hydrochloric acid solution. Res Chem Intermed 39, 1191–1208 (2013). https://doi.org/10.1007/s11164-012-0677-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-012-0677-8

Keywords

Navigation