Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Recent advancement in production of liquid biofuels from renewable resources: a review

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

This article was retracted on 28 October 2017

This article has been updated

Abstract

This work was carried out in search of a suitable fuel alternative to fast-depleting fossil fuel and oil reserves and in serious consideration of the environmental problems associated with the major use of fuels based on petrochemicals; research work is in progress worldwide. Researchers have been re-directing their interests to biomass-dependent fuels, which currently seem to be the only logical substitute for green development in the context of economical and environmental aspects. Renewable bioresources are available worldwide in the form of residual agricultural biomass and wastes, which can be converted into liquid biofuels. However, the process of converting, or chemical conversions, can be very expensive and not worthwhile to use for an economical large-scale commercial supply of biofuels. Hence, there is still need for souch research to be done on an effective, economical, and efficient conversion process. The objective of this review is to provide a deep overview of liquid biofuels and the present knowledge produced by scientists throughout the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 28 October 2017

    The authors have retracted this article [1] because it contains significant overlap with an article previously published by Nigam and Singh [2]. The authors apologise for any inconvenience caused. All authors agree to this retraction.

References

  1. A.K. Agrawal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33, 233–271 (2007)

    Article  CAS  Google Scholar 

  2. J.C. Escobar, E.S. Lora, O.J. Venturini, E.E. Yanez, E.F. Castillo, O. Almazan, Biofuels: environment, technology and food security. Renew. Sustain. Energy Rev. 13, 1275–1287 (2009)

    Article  CAS  Google Scholar 

  3. R. Zhao, S.R. Bean, D. Wang, S.H. Park, T.J. Schober, J.D. Wilson, Small-scale mashing procedure for predicting ethanol yield of sorghum grain. J. Cereal Sci. 49(2), 230–2388 (2009)

    Article  CAS  Google Scholar 

  4. A. Singh, D. Pant, N.E. Korres, A.S. Nizami, S. Prasad, J.D. Murphy, Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour. Technol. 101(13), 5003–5012 (2010)

    Article  CAS  Google Scholar 

  5. S. Prasad, A. Singh, N. Jain, H.C. Joshi, Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel. 21(4), 2415–2420 (2007)

    Article  CAS  Google Scholar 

  6. R.E. Gullison, P.C. Frumhoff, J.G. Canadell, C.B. Field, D.C. Nepstad, K. Hayhoe et al., Tropical forests and climate policy. Science 316, 985–1006 (2007)

    Article  CAS  Google Scholar 

  7. Y. He, S. Wang, K.K. Lai, Global economic activity and crude oil prices: a cointegration analysis. Energy Econ. (2010). doi:10.1016/j.eneco.2009.12.005

    Google Scholar 

  8. A. Singh, B.M. Smyth, J.D. Murphy, A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew. Sustain. Energy Rev. 14(1), 277–288 (2010)

    Article  CAS  Google Scholar 

  9. S. Prasad, A. Singh, H.C. Joshi, Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour. Conserv. Recycl. 50, 1–39 (2007)

    Article  Google Scholar 

  10. J.S. Dennis, S.A. Scott, A.L. Stephenson, Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process Saf. Environ. Prot. 86, 427–440 (2008)

    Article  CAS  Google Scholar 

  11. H.N. Bhatti, M.A. Hanif, M. Qasim, Ata-ur-Rehman, Biodiesel production from waste tallow. Fuel 87, 2961–2966 (2008)

    Article  CAS  Google Scholar 

  12. A. Demirbas, Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energy Convers. Manag. 49, 125–130 (2008)

    Article  CAS  Google Scholar 

  13. B. Delfort, I. Durand, G. Hillion, A. Jaecker-Voirol, X. Montagne, Glycerin for new biodiesel formulation. Oil Gas Sci. Technol. e Rev. IFP 63(4), 395–404 (2008)

    Article  CAS  Google Scholar 

  14. K. Aleklett, C.J. Campbell, The peak and decline of world oil and gas production. Miner. Energy 18, 35–42 (2003)

    Google Scholar 

  15. L. Fulton, T. Howes, J. Hardy, Biofuels for transport: an international perspective (International Energy Agency (IEA), Paris, 2004)

    Google Scholar 

  16. W.J. Armbruster, W.T. Coyle, Pacific food system outlook 2006–2007: the future role of biofuels (Pacific Economic Cooperation Council, Singapore, 2006). http://www.pecc.org/food/pfso-singapore2006/PECC-Annual-06-07.pdf

  17. J. Pickett, D. Anderson, D. Bowles, T. Bridgwater, P. Jarvis, N. Mortimer, M. Poliakoff, J. Woods, Sustainable biofuels: prospects and challenges (The Royal Society, London, 2008). http://royalsociety.org/document.asp?id=7366

  18. D. Murray, Ethanol’s potential: looking beyond corn (Earth Policy Institute, Washington DC, 2005). http://www.earthpolicy.org/Updates/2005/Update49.htm

  19. F.O. Licht, World ethanol & biofuels report (Agra Informa Ltd., Kent). http://www.agra-net.com/portal/puboptions.jsp?Option¼menu&pubId¼ag072

  20. T. Wiesenthal, G. Leduc, P. Christidis, B. Schade, L. Pelkmans, L. Govaerts et al., Biofuel support policies in Europe: lessons learnt for the long way ahead. Renew. Sustain. Energy Rev. 13, 789–800 (2009)

    Article  Google Scholar 

  21. EU, Directive 2009/28/EC of The European Parliament and of The Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 52, 16–62 (2009)

    Google Scholar 

  22. L. Pelkmans, E. Portouli, A. Papageorgiou, P. Georgopoulos. Impact assessment of measures towards the introduction of biofuels in the European Union. Report of Work Package 4 of the PREMIA project (2006)

  23. NEXANT, Liquid biofuels: substituting for petroleum (Nexant, Inc., San Francisco, 2007). http://www.chemsystems.com/reports/search/docs/prospectus/MC_Biofuels_Pros.pdf

  24. E.D. Larson, Biofuel production technologies: status, prospects and implications for trade and development. Report No. UNCTAD/DITC/TED/2007/10. United Nations Conference on Trade and Development, New York and Geneva, 2008

  25. FAO, The state of food and agriculture. BIOFUELS: prospects, risks and opportunities (FAO, Rome, 2008)

    Google Scholar 

  26. S.K. Hoekman, Biofuels in the U.S.—challenges and opportunities. Renew. Energy 34, 14–22 (2009)

    Article  CAS  Google Scholar 

  27. USDA (United States Department of Agriculture), Production estimates and crop assessment division of foreign agricultural service. EU: Biodiesel industry expanding use of oilseeds (2003). http://www.biodiesel.org/resources/reportsdatabase/reports/gen/20030920-gen330.pdf

  28. A. Demirbas, Progress and recent trends in biodiesel fuels. Energy Conserv. Manag. 50, 14–34 (2009)

    Article  CAS  Google Scholar 

  29. D. Bajpai, V.K. Tyagi, Biodiesel: source, production, composition, properties and its benefits. J. Olio Sci. 55, 487–502 (2006)

    Article  CAS  Google Scholar 

  30. H.R. Giselrød, V. Patil, K. Tran, Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 9, 1188–1195 (2008)

    Article  CAS  Google Scholar 

  31. G. Love, S. Gough, D. Brady, N. Barron, P. Nigam, D. Singh et al., Continuous ethanol fermentation at 45 °C using Kluyveromyces marxianus IMB3 immobilized in calcium alginate and kissiris. Bioprocess Eng. 18, 187–189 (1998)

    CAS  Google Scholar 

  32. P. Nigam, I.M. Banat, D. Singh, A.P. McHale, A.P. Marchant, Continuous ethanol production by thermotolerant Kluyveromyces marxianus immobilized on mineral kissiris at 45 °C. World J. Microbiol. Biotechnol. 13, 283–288 (1997)

    Article  CAS  Google Scholar 

  33. D. Brady, P. Nigam, R. Marchant, A.P. McHale, Ethanol production at 45 °C by immobilized Kluyveromyces marxianus IMB3 during growth on lactose-containing media. Bioprocess Eng. 16, 101–104 (1997)

    Article  CAS  Google Scholar 

  34. D. Brady, P. Nigam, R. Marchant, D. Singh, A.P. McHale, The effect of Mn2þ on ethanol production from actose using Kluyveromyces marxianus IMB3 immobilized in magnetically responsive matrices. Bioprocess Eng. 17, 31–34 (1997)

    CAS  Google Scholar 

  35. D. Brady, P. Nigam, R. Marchant, L. McHale, A.P. McHale, Ethanol production at 45 °C by Kluyveromyces marxianus IMB3 immobilized in magnetically responsive alginate matrices. Biotechnol. Lett. 18(10), 1213–1216 (1996)

    Article  CAS  Google Scholar 

  36. C. Riordon, G. Love, N. Barron, P. Nigam, R. Marchant, L. McHale et al., Production of ethanol from sucrose at 45 °C by alginate immobilized preparations of the thermotolerant yeast strain Kluyveromyces marxianus IMB 3. Bioresour. Technol. 55, 17–173 (1996)

    Google Scholar 

  37. G. Love, P. Nigam, N. Barron, D. Singh, R. Marchant, A.P. McHale, Ethanol production at 45 °C using preparations of Kluyveromyces marxianus IMB 3 immobilized in calcium alginate and kissiris. Bioprocess Eng. 15, 275–277 (1996)

    Article  CAS  Google Scholar 

  38. I.M. Banat, P. Nigam, R. Marchant, Isolation of a thermotolerant, fermentative yeasts growing at 52 °C and producing ethanol at 45 °C & 50 °C. World J. Microbiol. Biotechnol. 8, 259–263 (1992)

    Article  CAS  Google Scholar 

  39. W.R. Gibbons, C.A. Westby, Cofermentation of sweet sorghum juice and grain for production of fuel ethanol and distillers’ wet grain. Biomass 18(1), 43–57 (1989)

    Article  CAS  Google Scholar 

  40. K. Suresh, N. Kiran Sree, L.V. Rao, Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour. Technol. 68(3), 301–304 (1999)

    Article  CAS  Google Scholar 

  41. A.F. Turhollow, E.O. Heady, Large-scale ethanol production from corn and grain sorghum and improving conversion technology. Energy Agric. 5(4), 309–316 (1986)

    Article  CAS  Google Scholar 

  42. IEA, Biofuels for transport e an international perspective (International Energy Agency (IEA), Paris, 2004). http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf

  43. D.J. Stevens, M. Worgetten, J. Saddler, Biofuels for transportation: an examination of policy and technical issues. IEA Bioenergy Task 39. Liquid Biofuels Final Report 2001–2003, 2004

  44. N.K. Aggarwal, P. Nigam, D. Singh, B.S. Yadav, Process optimisation for the production of sugar for the bioethanol industry from sorghum a nonconventional source of starch. World J. Microbiol. Biotechnol. 17, 125–131 (2001)

    Article  Google Scholar 

  45. G. Verma, P. Nigam, D. Singh, K. Chaudhary, Bioconversion of starch to ethanol in a single-step process by co-culture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour. Technol. 72, 261–266 (2000)

    Article  CAS  Google Scholar 

  46. D. Singh, J.S. Dahiya, P. Nigam, Simultaneous raw starch hydrolysis and ethanol fermentation by glucoamylase from Rhizoctonia solani and Saccharomyces cerevisiae. J. Basic Microbiol. 35, 117–121 (1995)

    Article  CAS  Google Scholar 

  47. N. Barron, D. Brady, G. Love, R. Marchant, P. Nigam, L. McHale, A.P. McHale, Alginate immobilized thermotolerant yeast for conversion of cellulose to ethanol, in Progress in biotechnology e immobilized cells: basics & applications, ed. by R.H. Wijffels, R.M. Buitelaar, C. Bucke, J. Tramper (Elsevier Science B.V., Amsterdam, 1996), pp. 379–383

    Google Scholar 

  48. F.E.M. Farias, F.R.C. Silva, S.J.M. Cartaxo, F.A.N. Fernandes, F.G. Sales, Effect of operating conditions on Fischer–Tropsch liquid products. Lat. Am. Appl. Res. 37, 283–287 (2007)

    CAS  Google Scholar 

  49. L. Brennan, P. Owende, Biofuels from microalgae e a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)

    Article  CAS  Google Scholar 

  50. W. Xiong, X. Li, J. Xiang, O. Wu, High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl. Microbiol. Biotechnol. 78, 29–36 (2008)

    Article  CAS  Google Scholar 

  51. C. Huang, M.H. Zong, W. Hong, Q.P. Liu, Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour. Technol. 100, 4535–4538 (2009)

    Article  CAS  Google Scholar 

  52. L.Y. Zhu, M.H. Zong, H. Wu, Efficient lipid production with T. fermentas and its use for biodiesel preparation. Bioresour. Technol. 99, 7881–7885 (2008)

    Article  CAS  Google Scholar 

  53. J. Chen, T. Ishiii, S. Shimura, K. Kirimura, S. Usami, Lipase production by Trichosporon fermentans WU-C12, a newly isolated yeast. J. Ferment. Bioeng. 5, 412–414 (1992)

    Article  Google Scholar 

  54. S. Fakas, M. Galiotou-Panayotou, S. Papanikolaou, M. Komaitis, G. Aggelis, Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microbiol. Technol. 40, 1321–1327 (2007)

    Article  CAS  Google Scholar 

  55. Royal Society of London, Sustainable biofuels: prospects and challenges (Royal Society, London, 2008)

    Google Scholar 

  56. T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14, 217–232 (2010)

    Article  CAS  Google Scholar 

  57. E.A. Farrell, M. Bustard, S. Gough, G. McMullan, P. Nigam, D. Singh et al., Ethanol production at 45 °C by Kluyveromyces marxianus IMB3 during growth on molasses pre-treated with Amberlite® and non-living biomass. Bioprocess Eng. 19, 217–219 (1998)

    CAS  Google Scholar 

  58. O. Pulz, K. Scheinbenbogan, Photobioreactors: design and performance with respect to light energy input. Adv. Biochem. Eng. Biotechnol. 59, 123–152 (1998)

    Article  CAS  Google Scholar 

  59. Y. Wang, H. Wu, M.H. Zong, Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour. Technol. 99, 7232–7237 (2008)

    Article  CAS  Google Scholar 

  60. L.M. Brown, Uptake of carbon dioxide from flue gas by microalgae. Energy Convers. Manag. 37(6–8), 1363–1367 (1996)

    Article  CAS  Google Scholar 

  61. H.T. Hsueh, H. Chu, S.T. Yu, A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66(5), 878–886 (2007)

    Article  CAS  Google Scholar 

  62. I. Emma Huertas, B. Colman, G.S. Espie, L.M. Lubian, Active transport of CO2 by three species of marine microalgae. J. Phycol. 36(2), 314–320 (2000)

    Article  Google Scholar 

  63. B. Colman, C. Rotatore, Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ. 18(8), 919–924 (1995)

    Article  CAS  Google Scholar 

  64. I.S. Suh, C.G. Lee, Photobioreactor engineering: design and performance. Biotechnol. Bioprocess Eng. 8(6), 313–321 (2003)

    Article  CAS  Google Scholar 

  65. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert et al., Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621–639 (2008)

    Article  CAS  Google Scholar 

  66. X.L. Miao, Q.Y. Wu, Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97, 841–846 (2006)

    Article  CAS  Google Scholar 

  67. A. Widjaja, C.C. Chien, Y.H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 40, 13–20 (2009)

    Article  CAS  Google Scholar 

  68. J. Meng, X. Yang, L. Xu, Q. Zhang, M. Nie Xian, Biodiesel production from oleaginous microorganisms. Renew. Energy 34, 1–5 (2009)

    Article  CAS  Google Scholar 

  69. K. Tsukahara, S. Sawayama, Liquid fuel production using microalgae. J. Jpn. Pet. Inst. 48(5), 251–259 (2005)

    Article  CAS  Google Scholar 

  70. U.S. Department of Energy, A national vision of Americas transition in a hydrogen economy—in 2030 and beyond (U.S. Department of Energy, Washington, DC, 2002)

    Google Scholar 

  71. B. Grant, Biofuels made from algae are the next big thing on alternative energy horizon. Scientist 37–41 (2009)

  72. V. Nedovi’c, S. Nikolic, D. Ljiljana Mojovic, M. Pejin Rakin, Effect of different fermentation parameters on bioethanol production from corn meal hydrolyzates by free and immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. J. Chem. Technol. Biotechnol. 84, 497–503 (2009)

    Article  CAS  Google Scholar 

  73. J. Johnston, New world for biofuels. Energy Law 86, 10–14 (2008)

    Google Scholar 

  74. S.N. Naik, V.V. Goud, P.K. Rout, A.K. Dalai, Production of first and second generation biofuels: a comprehensive review. Renew. Sustain. Energy Rev. 14, 578–597 (2010)

    Article  CAS  Google Scholar 

  75. D. Singh, I.M. Banat, P. Nigam, R. Marchant, Industrial scale ethanol production using thermotolerant yeast Kluyveromyces marxianus in an Indian distillery. Biotechnol. Lett. 20, 753–755 (1998)

    Article  CAS  Google Scholar 

  76. A. Sheoran, B.S. Yadav, P. Nigam, D. Singh, Continuous ethanol production from sugarcane molasses using a column reactor of immobilized Saccharomyces cerevisiae. J. Basic Microbiol. 38, 73–78 (1998)

    Article  Google Scholar 

  77. S. Gough, D. Brady, P. Nigam, D. Singh, R. Marchant, A.P. McHale, Production of ethanol from molasses at 45 °C using alginate immobilized Kluyveromyces marxianus IMB3. Bioprocess Eng. 16, 389–392 (1997)

    CAS  Google Scholar 

  78. J.D. McMillan, Pretreatment of lignocelluloses biomass, in Conversion of hemicellulose hydrolyzates to ethanol, ed. by M.E. Himmel, J.O. Baker, R.P. Overend (American Chemical Society, Washington, DC, 1994), pp. 292–324

    Google Scholar 

  79. Y. Sun, J. Cheng, Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  CAS  Google Scholar 

  80. P.J. Morjanoff, P.P. Gray, Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol. Bioeng. 29, 733–741 (1987)

    Article  CAS  Google Scholar 

  81. D. Ben-Ghedalia, J. Miron, The effect of combined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol. Bioeng. 23, 823–831 (1981)

    Article  CAS  Google Scholar 

  82. P.F. Vidal, J. Molinier, Ozonolysis of lignin-improvement of in vitro digestibility of popular sawdust. Biomass 16, 1–17 (1988)

    Article  CAS  Google Scholar 

  83. M.V. Sivers, G. Zacchi, A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour. Technol. 51, 43–52 (1995)

    Article  Google Scholar 

  84. H. Tarkow, W.C. Feist, A mechanism for improving the digestibility of lignocellulosic materials with dilute alkali and liquid NH3. in Advance chemistry series 95 (American Chemical Society, Washington, DC, 1969), pp. 197–218

  85. A.M. Azzam, Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J. Environ. Sci. Health B 24(4), 421–433 (1989)

    Article  Google Scholar 

  86. J. Schurz, T.K. Ghose, ed. by T.K. Ghose. Bioconversion of cellulosic substances into energy chemicals and microbial protein symposium proceedings (1978), p. 37

  87. K. Boominathan, C.A. Reddy, cAMP-mediated differential regulation of lignin peroxidase and manganese dependent peroxidase production in the whiterot basidiomycete Phanerochaete chrysosporium. Proc. Natl. Acad. Sci. USA 89(12), 5586–5590 (1992)

    Article  CAS  Google Scholar 

  88. R.A. Blanchette, Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29, 381–398 (1991)

    Article  CAS  Google Scholar 

  89. A.F. Azhar, M.K. Bery, A.R. Colcord, R.S. Roberts, G.V. Corbitt, Factors affecting alcohol fermentation of wood acid hydrolyzate. Biotechnol. Bioeng. Symp. 11, 293–300 (1981)

    CAS  Google Scholar 

  90. T.D. Ranatunga, J. Jervis, R.F. Helm, J.D. McMillan, C. Hatzis, Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl. Biochem. Biotechnol. 67, 185–195 (1997)

    Article  CAS  Google Scholar 

  91. J. Zaldivar, A. Martinez, L.O. Ingram, Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol. Bioeng. 65, 24–33 (1999)

    Article  CAS  Google Scholar 

  92. R. Boopathy, L. Daniels, Isolation and characterization of a furfural degrading sulfate-reducing bacterium from an anaerobic digester. Curr. Microbiol. 23, 327–332 (1991)

    Article  CAS  Google Scholar 

  93. T. Gutierrez, M.L. Buszko, L.O. Ingram, J.F. Preston, Reduction of furfural to furfuryl alcohol by ethanologenic strains of bacteria and its effect on ethanol production from xylose. Appl. Biochem. Biotechnol. 98–100, 327–340 (2002)

    Article  Google Scholar 

  94. P. Wang, J.E. Brenchley, A.E. Humphrey, Screening microorganisms for utilization of furfural and possible intermediates in its degradative pathway. Biotechnol. Lett. 16, 977–982 (1994)

    Article  CAS  Google Scholar 

  95. G. Beguin, J.P. Aubert, The biological degradation of cellulose. FEMS Microbiol. Rev. 13, 25–28 (1994)

    Article  CAS  Google Scholar 

  96. M.P. Coughlan, L.G. Ljungdahl, Comparative biochemistry of fungal and bacterial cellulolytic enzyme system, in Biochemistry and genetics of cellulose degradation, ed. by J.P. Aubert, P. Beguin, J. Millet (Academic Press, London, 1988), pp. 11–30

    Google Scholar 

  97. S.J.B. Duff, W.D. Murray, Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55, 1–33 (1996)

    Article  CAS  Google Scholar 

  98. V.S. Bisaria, Bioprocessing of agro-residue to glucose and chemicals, in Bioconversion of waste materials to industrial products, ed. by A.M. Martin (Elsevier, London, 1991), pp. 210–233

    Google Scholar 

  99. A. Singh, P.K.R. Kumar, K. Schugerl, Bioconversion of cellulosic materials to ethanol by filamentous fungi. Adv. Biochem. Eng. Biotechnol. 45, 29–55 (1992)

    CAS  Google Scholar 

  100. L.R. Lynd, W.H. van Zyl, J.E. McBride, M. Laser, Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583 (2005)

    Article  CAS  Google Scholar 

  101. A. Saxena, S.K. Garg, J. Verma, Simultaneous saccharification and fermentation of waste newspaper to ethanol. Bioresour. Technol. 39, 13–15 (1992)

    Article  Google Scholar 

  102. Y.Z. Zheng, H.M. Lin, G.T. Tsao, Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnol. Prog. 14, 890–896 (1998)

    Article  CAS  Google Scholar 

  103. M. Zhang, C. Eddy, K. Daenda, M. Finkelstein, S.K. Picataggio, Metabolic engineering of a pentose pathway in ethanologenic Zymomonas mobilis. Science 267, 240–243 (1995)

    Article  CAS  Google Scholar 

  104. B.S. Dien, N.N. Nichols, P.J. O’Bryan, R.J. Bothast, Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl. Biochem. Biotechnol. 66, 181–196 (2000)

    Article  Google Scholar 

  105. L.R. Lynd, C.E. Wyman, T.U. Gerngross, Biocommodity engineering. Biotechnol. Prog. 15, 777–793 (1999)

    Article  CAS  Google Scholar 

  106. C.E. Wyman, Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu. Rev. Energy Environ. 24, 189–226 (1999)

    Article  Google Scholar 

  107. I.M. Banat, P. Nigam, D. Singh, R. Marchant, A.P. Mchale, Ethanol production at elevated temperatures and alcohol concentrations, part I—yeasts in general. World J. Microbiol. Biotechnol. 14, 809–821 (1998)

    Article  CAS  Google Scholar 

  108. D. Singh, P. Nigam, I.M. Banat, R. Marchant, A.P. Mchale, Ethanol production at elevated temperatures and alcohol concentrations, part II—use of Klyuveromyces marxianus IMB. World J. Microbiol. Biotechnol. 14, 823–834 (1998)

    Article  CAS  Google Scholar 

  109. L. Wati, S. Dhamija, D. Singh, P. Nigam, R. Marchant, A.P. Mchale, Characterisation of genetic control of thermotolerance in mutants of Saccharomyces cerevisiae. Genet. Eng. Biotechnol. 16, 19–26 (1996)

    Google Scholar 

  110. B.S. Yadav, U. Rani, S. Dhamija, P. Nigam, D. Singh, Process optimization for continuous ethanol fermentation by alginate immobilised cells of Saccharomyces cerevisiae HAU-1. J. Basic Microbiol. 36, 205–210 (1996)

    Article  CAS  Google Scholar 

  111. I.M. Banat, P. Nigam, D. Singh, A.P. McHale, R. Marchant, Ethanol production using thermotolerant/thermophilic yeast strains: potential future exploitation, in Advances in biotechnology, ed. by A. Pandey (Educational Publishers & Distributors, New Delhi, 1998), pp. 105–119

    Google Scholar 

  112. I.M. Banat, D. Singh, P. Nigam, R. Marchant, Potential of thermotolerant fermentative yeast for industrial ethanol production. Res. Adv. Food Sci. 1, 41–55 (2000)

    Google Scholar 

  113. W.R. Abdel-Fattah, M. Fadil, P. Nigam, I.M. Banat, Isolation of thermotolerant ethanologenic yeasts and use of selected strains in industrial scale fermentation in an Egyptian distillery. Biotechnol. Bioeng. 68, 531–535 (2000)

    Article  CAS  Google Scholar 

  114. C.F. Huang, T.H. Lin, G.L. Guo, W.S. Hwang, Enhanced ethanol production by fermentation of rice straw hydrolysate without toxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100, 3914–3920 (2009)

    Article  CAS  Google Scholar 

  115. R.K. Sukumaran, R.R. Singhania, G.M. Mathew, A. Pandey, Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bioethanol production. Renew. Energy. 34, 421–424 (2009)

    Article  CAS  Google Scholar 

  116. G.T. Tsao, Some technical background information of butanol as biofuel. Adv. Biotechnol. (2009). http://www.advancedbiotech.org/Some%20Technical%

  117. D. Ramey, Butanol advances in biofuels. The Light Party (2004). http://www.lightparty.com/Energy/Butanol.html

  118. K. Brekke, Butanol an energy alternative? Ethanol Today 36–39 (2007)

  119. EBTP. Biobutanol. European biofuels technology platform (EBTP) (2009). http://www.biofuelstp.eu/butanol.html

  120. M. Wu, M. Wang, J. Liu, H. Huo, Life-cycle assessment of corn-based butanol as a potential transportation fuel. Argonne National Laboratory, ANL/ESD/07-10 (2007)

  121. N. Qureshi, B.C. Saha, B. Dien, R.E. Hector, M.A. Cotta, Production of butanol (a biofuel) from agricultural residues: part I—use of barley straw hydrolysate. Biomass Bioenergy 34(4), 559–565 (2010)

    Article  CAS  Google Scholar 

  122. T.C. Ezeji, N. Qureshi, H.P. Blaschek, Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 18, 220–227 (2007)

    Article  CAS  Google Scholar 

  123. N. Qureshi, J. Ebener, T.C. Ezeji, B. Dien, M.A. Cotta, H.P. Blaschek, Butanol production by Clostridium beijerinckii BA101. Part I: use of acid and enzyme hydrolysed corn fiber. Bioresour. Technol. 99, 5915–5922 (2008)

    Article  CAS  Google Scholar 

  124. N. Qureshi, B.C. Saha, R.E. Hector, M.A. Cotta, Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32, 1353–1358 (2008)

    Article  CAS  Google Scholar 

  125. N. Qureshi, B.C. Saha, R.E. Hector, B. Dien, S. Hughes, S. Liu et al., Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34(4), 566–571 (2010)

    Article  CAS  Google Scholar 

  126. T. Ezeji, N. Qureshi, H.P. Blaschek, Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Proc Biochem. 42, 34–39 (2007)

    Article  CAS  Google Scholar 

  127. T.C. Ezeji, N. Qureshi, H.P. Blaschek, Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97(6), 1460–1469 (2007)

    Article  CAS  Google Scholar 

  128. W.C. Huang, D.E. Ramey, S.T. Yang, Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed reactor. Appl. Biochem. Biotechnol. 113, 887–898 (2004)

    Article  Google Scholar 

  129. T.C. Ezeji, N. Qureshi, P. Karcher, H.P. Blaschek, Butanol production from corn, in Alcoholic fuels: fuels for today and tomorrow, ed. by S.D. Minteer (Taylor and Francis, New York, 2006), pp. 99–122

    Google Scholar 

  130. T.C. Ezeji, N. Qureshi, H.P. Blaschek, Industrially relevant fermentations, in Handbook on Clostridia, ed. by P. Durre (CRC Press Taylor and Francis Group, Boca Raton, 2005), pp. 797–812

    Chapter  Google Scholar 

  131. T.C. Ezeji, N. Qureshi, H.P. Blaschek, Process for continuous solvent production. U.S. Provisional Patent, No. 60/504, 280 (2005)

  132. N. Qureshi, B.C. Saha, R.E. Hector, S.R. Hughes, M.A. Cotta, Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—batch fermentation. Biomass Bioenergy 32, 168–175 (2008)

    Article  CAS  Google Scholar 

  133. MERCK, Bio-butanol as high energy additive for fuels (Merck KGaA, Darmstadt, 2009). http://www.qibebt.cas.cn/xwzx/xshd/200909/P020090922581227413923.pdf

  134. Science News. Scientists hike butanol biofuel production. http://www.upi.com/science-news. Accessed on 24 Aug 2009

  135. E. Celinska, W. Grajek, Biotechnological production of 2,3-butanediol—current state and prospects. Biotechnol. Adv. 27, 715–725 (2009)

    Article  CAS  Google Scholar 

  136. N. Qureshi, B.C. Saha, M.A. Cotta, Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst. Eng. 30, 419–427 (2007)

    Article  CAS  Google Scholar 

  137. Biobutanol production from lignocellulosic substrates. http://www2.dupont.com/Production-Agriculture

  138. Biobutanol production from lignocellulosic substrates. http://www.biofuelstp.eu/butanol.html

  139. F. Ma, M.A. Hanna, Biodiesel production: a review. Bioresour. Technol. 70, 1–15 (1999)

    Article  CAS  Google Scholar 

  140. E.M. Shahid, J. Jamal, A review of biodiesel as vehicular fuel. Renew. Sustain. Energy Rev. 12, 2484–2494 (2008)

    Article  CAS  Google Scholar 

  141. N. Usta, E. Ozturk, O. Can, E.S. Conkur, S. Nas, A.H. Con, Combustion of biodiesel fuel produced from hazelnut soapstuck/waste sunflower oil mixture in a diesel engine. Energy Convers. Manag. 46, 741–775 (2005)

    Article  CAS  Google Scholar 

  142. Y.C. Sharma, B. Singh, S.N. Upadhay, Advancements in development and characterisation of biodiesel: a review. Fuel 87, 2355–2373 (2008)

    Article  CAS  Google Scholar 

  143. Z. Helwani, M.R. Othman, N. Aziz, W.J.N. Fernando, J. Kim, Technologies for production of biodiesel focusing on green catalytic techniques: a review. Fuel Process. Technol. 90, 1502–1514 (2009)

    Article  CAS  Google Scholar 

  144. F. Billaud, Y. Guitard, A.K.T. Minh, O. Zahraa, P. Lozano, D. Pioch, Kinetic studies of catalytic cracking of octanoic acid. J. Mol. Catal. A Chem. 192, 281–288 (2003)

    Article  CAS  Google Scholar 

  145. G. Knothe, R.O. Dunn, M.O. Bagby, Biodiesel: the use of vegetable oils and their derivatives as alternative diesel fuels, in Fuels and chemicals from biomass, ed. by B.C. Saha (American Chemical Society, Washington, DC, 1997), pp. 172–208

    Chapter  Google Scholar 

  146. A.W. Schwab, G.J. Dykstra, E. Selke, S.C. Sorenson, E.H. Pryde, Diesel fuel from thermal-decomposition of soybean oil. J. Am. Oil Chem. Soc. 65, 1781–1786 (1988)

    Article  CAS  Google Scholar 

  147. J.M. Marchetti, V.U. Miguel, A.F. Errazu, Possible methods for biodiesel production. Renew. Sustain. Energy Rev. 11(6), 1300–1311 (2007)

    Article  CAS  Google Scholar 

  148. M. Canakci, A.N. Ozsenzen, E. Arcaklioglu, A. Erdil, Prediction of performance and exhaust emissions of a diesel engine duelled with biodiesel produced from waste frying palm oil. Expert Syst. Appl. 36, 9268–9280 (2009)

    Article  Google Scholar 

  149. Nigam P, Centrans: chemical e enzymatic trans-esterification of bio-oils to biodiesel. in Higher Education Innovation Fund, Academic Enterprise Initiatives, University of Ulster, 2008

  150. P. Nigam, M. Kumar, International workshop on biofuels research and development. in ECI Conference USA, Calabaria, 3–7, Aug, 2008

  151. U. Schuchardta, R. Serchelia, R.M. Vargas, Transesterification of vegetable oils: a review. J. Braz. Chem. Soc. 9, 199–210 (1998)

    Google Scholar 

  152. L.C. Meher, V.S. Dharmagadda, S.N. Naik, Optimization of alkali catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour. Technol. 97, 1392–1397 (2006)

    Article  CAS  Google Scholar 

  153. S.K. Karmee, A. Chadha, Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour. Technol. 96, 1425–1429 (2005)

    Article  CAS  Google Scholar 

  154. S. Furuta, H. Matsuhasbi, K. Arata, Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun. 5, 721–723 (2004)

    Article  CAS  Google Scholar 

  155. M. Canakci, J.V. Gerpen, A pilot plant to produce biodiesel from high free fatty acid feedstocks. Trans. ASAE 46, 945–955 (2003)

    CAS  Google Scholar 

  156. V. Rathore, G. Madras, Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel 86, 2650–2659 (2007)

    Article  CAS  Google Scholar 

  157. C.L. Peterson, J.L. Cook, J.C. Thompson, J.S. Taberski, Continuous flow biodiesel production. Appl. Eng. Agric. 18(1), 5–11 (2002)

    Article  Google Scholar 

  158. A.A. Kiss, Separative reactors for integrated production of bioethanol and biodiesel. Comput. Chem. Eng. 34(5), 812–820 (2010)

    Article  CAS  Google Scholar 

  159. E. Lotero, Y.J. Liu, D.E. Lopez, K. Suwannakarn, D.A. Bruce, J.G. Goodwin, Synthesis of biodiesel via acid catalysis. Ind. Eng. Chem. Res. 44, 5353–5363 (2005)

    Article  CAS  Google Scholar 

  160. K. Narasimharao, A. Lee, K. Wilson, Catalysts in production of biodiesel: a review. J. Biobased Mater Bioenergy 1, 19–30 (2007)

    Google Scholar 

  161. J. Van Gerpen, Biodiesel processing and production. Fuel Process. Technol. 86, 1097–1107 (2005)

    Article  CAS  Google Scholar 

  162. M.A. Hanna, L. Isom, J. Campbell, Biodiesel: current perspectives and future. J. Sci. Ind. Res. 64, 854–857 (2005)

    CAS  Google Scholar 

  163. G. Vicente, M. Martinez, J. Aracil, Integrated biodiesel production: a comparison of different homogeneous catalyst systems. Bioresour. Technol. 92, 297–305 (2004)

    Article  CAS  Google Scholar 

  164. B. Dale, Greening the chemical industry: research and development priorities for biobased industrial products. J. Chem. Technol. Biotechnol. 78, 1093–1103 (2003)

    Article  CAS  Google Scholar 

  165. T.F. Dossin, M.F. Reyniers, R.J. Berger, G.B. Marin, Simulation of heterogeneously MgO-catalyzed transesterification for fine-chemical and biodiesel industrial production. Appl. Catal. B Environ. 67, 136–148 (2006)

    Article  CAS  Google Scholar 

  166. A.A. Kiss, A.C. Dimian, G. Rothenberg, Solid acid catalysts for biodiesel production towards sustainable energy. Adv. Synth. Catal. 348, 75–81 (2006)

    Article  CAS  Google Scholar 

  167. A.A. Kiss, A.C. Dimian, G. Rothenberg, ‘Green catalysts’ for enhanced biodiesel technology, catalysis of organic reactions. Chem. Ind. Ser. 115, 405–414 (2006)

    Google Scholar 

  168. A.A. Kiss, G. Rothenberg, A.C. Dimian, F. Omota, The heterogeneous advantage: biodiesel by catalytic reactive distillation. Top. Catal. 40, 141–150 (2006)

    Article  CAS  Google Scholar 

  169. B.B. He, A.P. Singh, J.C. Thompson, A novel continuous-flow reactor using reactive distillation for biodiesel production. Trans. ASAE 49, 107–112 (2006)

    Article  CAS  Google Scholar 

  170. K. Suwannakarn, E. Lotero, K. Ngaosuwan, J.G. Goodwin, Simultaneous free fatty acid esterification and triglyceride transesterification using a solid acid catalyst with in situ removal of water and unreacted methanol. Ind. Eng. Chem. Res. 48, 2810–2818 (2009)

    Article  CAS  Google Scholar 

  171. L. Bournay, D. Casanave, B. Delfort, G. Hillion, J.A. Chodorge, New heterogeneous process for biodiesel production. Catal. Today 106, 190–192 (2005)

    Article  CAS  Google Scholar 

  172. G. Vicente, M. Martinez, J. Aracil, A. Esteban, Kinetics of sunflower oil methanolysis. Ind. Eng. Chem. Res. 44(15), 5447–5454 (2005)

    Article  CAS  Google Scholar 

  173. D. Darnoko, M. Cheryan, Continuous production of palm methyl esters. J. Am. Oil Chem. Soc. 77, 1269–1272 (2000)

    Article  CAS  Google Scholar 

  174. O.S. Stamenkovic, M.L. Lazic, Z.B. Todorovic, V.B. Veljkovic, D.U. Skala, The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil. Bioresour. Technol. 98(14), 2688–2699 (2007)

    Article  CAS  Google Scholar 

  175. D. Kusdiana, S. Saka, Two-step preparation for catalyst-free biodiesel fuel production: hydrolysis and methyl esterification. Appl. Biochem. Biotechnol. 115, 781–792 (2004)

    Article  Google Scholar 

  176. E. Minami, S. Saka, Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process. Fuel 85, 2479–2483 (2006)

    Article  CAS  Google Scholar 

  177. G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 86, 1059–1070 (2005)

    Article  CAS  Google Scholar 

  178. A.A. Kiss, A.C. Dimian, G. Rothenberg, Biodiesel by reactive distillation powered by metal oxides. Energy Fuels 22, 598–604 (2008)

    Article  CAS  Google Scholar 

  179. F. Omota, A.C. Dimian, A. Bliek, Fatty acid esterification by reactive distillation. Part 1: equilibrium-based design. Chem. Eng. Sci. 58, 3159–3174 (2003)

    Article  CAS  Google Scholar 

  180. A.K. Singh, S.D. Fernando, Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts. Chem. Eng. Technol. 30(12), 1–6 (2007)

    Article  CAS  Google Scholar 

  181. B.M. Choudary, M.L. Kantam, C.V. Reddy, S. Aranganathan, Pl. Santhia, F. Figueras, Mg–Al–O–t-Bu hydrotalcite: a new and efficient heterogeneous catalyst for transesterification. J. Mol. Catal. A Chem. 159, 411–416 (2000)

    Article  CAS  Google Scholar 

  182. M.F. Demirbas, M. Balat, Recent advances on the production and utilization trends of bio-fuels. Energy Convers. Manag. 47, 2371–2378 (2006)

    Article  CAS  Google Scholar 

  183. S.H. Ha, M.N. Lan, S.H. Lee, S.M. Hwang, Y.M. Koo, Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microbiol. Technol. 41, 480–483 (2007)

    Article  CAS  Google Scholar 

  184. D. Royon, M. Daz, G. Ellenrieder, S. Locatelli, Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98, 648–653 (2007)

    Article  CAS  Google Scholar 

  185. S. Saka, D. Kusdiana, Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80, 225–231 (2001)

    Article  CAS  Google Scholar 

  186. W. Cao, H. Han, J. Zhang, Preparation of biodiesel from soybean using supercritical methanol and CO2. Process Biochem. 40, 3148–3151 (2005)

    Article  CAS  Google Scholar 

  187. H. He, T. Wang, S. Zhu, Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process. Fuel 86, 442–447 (2007)

    Article  CAS  Google Scholar 

  188. D. Kusdiana, S. Saka, Kinetics of transesterification in rapeseed oil to biodiesel fuels as treated in supercritical methanol. Fuel 80, 693–698 (2001)

    Article  CAS  Google Scholar 

  189. M. Balat, H. Balat, A critical review of bio-diesel as a vehicular fuel. Energy Convers. Manag. 49(10), 2727–2741 (2008)

    Article  CAS  Google Scholar 

  190. M.J. Groom, E. Gray, P.A. Townsend, Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv. Biol. 22, 602–609 (2008)

    Article  Google Scholar 

  191. J. Fargione, J. Hill, D. Tilman, S. Polasky, P. Hawthrone, Land clearing and the carbon debt. Sci. Mag. 319, 1235–1238 (2008)

    CAS  Google Scholar 

  192. FAO, in World agriculture: towards 2015/2030. An FAO perspective, ed. by J. Bruinsma. Food and Agriculture Organization (FAO) (Earthscan Publications Ltd, London, 2003). http://www.fao.org/docrep/005/y4252-/y4252-00.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharatkumar Z. Dholakiya.

Additional information

The authors have retracted this article [1] because it contains significant overlap with an article previously by Nigam and Singh [2]. The authors apologise for any inconvenience caused. All authors agree to this retraction.

References:

1. https://link.springer.com/article/10.1007/s11164-013-1231-z

2. http://www.sciencedirect.com/science/article/pii/S0360128510000353

A correction to this article is available online at https://doi.org/10.1007/s11164-017-3177-z.

About this article

Cite this article

Savaliya, M.L., Dhorajiya, B.D. & Dholakiya, B.Z. RETRACTED ARTICLE: Recent advancement in production of liquid biofuels from renewable resources: a review. Res Chem Intermed 41, 475–509 (2015). https://doi.org/10.1007/s11164-013-1231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1231-z

Keywords

Navigation