Skip to main content
Log in

A study of mechanism and operational parameters on solar light-induced degradation of Reactive Red 120 dye with AgBr-loaded TiO2

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photocatalytic activity of AgBr–TiO2 was investigated for the degradation of Reactive Red 120 (RR 120) in aqueous solution using solar light. AgBr–TiO2 was found to be more efficient than commercial TiO2–P25 and prepared TiO2 at pH 5 for the degradation of Reactive Red 120. The effects of operational parameters such as the amount of photocatalyst and initial pH on photo degradation have been analyzed. Based on the degradation intermediates identified by GC–MS analysis, a reaction pathway is proposed. The mechanism of solar degradation is reported and discussed using band energy levels of AgBr and TiO2.

Graphical abstract

Higher photocatalytic activity of AgBr nanoparticle loaded TiO2 (AgBr–TiO2) is found to have increased electron–hole separation by AgBr loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. G.M. Liu, X.Z. Li, J.C. Zhao, Environ. Sci. Technol. 34, 3982 (2000)

    Article  CAS  Google Scholar 

  2. M.H. Habibi, A. Hassanzadeh, S. Mahdavi, J. Photochem. Photobiol. A 172, 89 (2005)

    Article  CAS  Google Scholar 

  3. C. Hu, X.X. Hu, L.S. Wang, J.H. Qu, A.M. Wang, Environ. Sci. Technol. 40, 7903 (2006)

    Article  CAS  Google Scholar 

  4. M. Janus, A.W. Morawski, Appl. Catal. B 75, 118 (2007)

    Article  CAS  Google Scholar 

  5. O. Carp, C.L. Huisman, A. Reller, Solid State Chem. 32, 33 (2004)

    Article  CAS  Google Scholar 

  6. S. Usseglio, A. Damin, D. Scarano, S. Bordiga, A. Zecchina, C. Lamberti, J. Am. Chem. Soc. 129, 2822 (2007)

    Article  CAS  Google Scholar 

  7. C. Hu, Y.Q. Lan, J.H. Qu, X.X. Hu, A.M. Wang, J. Phys. Chem. B 110, 4066 (2006)

    Article  CAS  Google Scholar 

  8. M.R. Elahifard, S. Rahimnejad, S. Haghighi, M.R. Gholami, J. Am. Chem. Soc. 129, 9552 (2007)

    Article  CAS  Google Scholar 

  9. Y. Zang, R. Farnood, Appl. Catal. B 79, 334 (2008)

    Article  CAS  Google Scholar 

  10. S. Glaus, G. Calzaferri, Photochem. Photobiol. Sci. 2, 398 (2003)

    Article  CAS  Google Scholar 

  11. J. Belloni, M. Treguer, H. Remita, R.D. Keyzer, Nature 402, 865 (1999)

    Article  CAS  Google Scholar 

  12. H. Yamada, A.J. Bhattacharyya, J. Maier, Adv. Funct. Mater. 16, 525 (2006)

    Article  CAS  Google Scholar 

  13. Y. Yamashita, N. Aoyama, J. Mol. Catal. A 150, 233 (1999)

    Article  CAS  Google Scholar 

  14. S. Rodrigues, S. Uma, I.N. Martyanov, K.J. Klabunde, J. Catal. 233, 405 (2005)

    Article  CAS  Google Scholar 

  15. N. Kakuta, N. Goto, H. Ohkita, T. Mizushima, J. Phys. Chem. B 103, 5917 (1999)

    Article  CAS  Google Scholar 

  16. Y. Li, H. Zhang, Z. Guo, J. Han, X. Zhao, Q. Zhao, S.J. KIM, Langmuir 24, 8351 (2008)

    Article  CAS  Google Scholar 

  17. R. Velmurugan, B. Sreedhar, M. Swaminathan, Chem. Cent. J. 46, 1 (2011)

    Google Scholar 

  18. N. Kruse, S. Chenakin, Appl. Catal. A 391, 367 (2011)

    Article  CAS  Google Scholar 

  19. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Lv, T. Guo, Y. Zhao, C.J. Zhu, J. Hazard. Mater. 182, 123 (2010)

    Article  CAS  Google Scholar 

  20. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, M.H. Whangbo, Inorg. Chem. 48, 10697 (2009)

    Article  CAS  Google Scholar 

  21. N. Sobana, K. Selvam, M. Swaminathan, Sep. Purif. Technol. 62, 648 (2008)

    Article  CAS  Google Scholar 

  22. M. Muruganandham, N. Shobana, M. Swaminathan, J. Mol. Catal. A 246, 154 (2006)

    Article  CAS  Google Scholar 

  23. S. Anandan, P.S. Kumar, N. Pugazhenthiran, J. Madhavan, P. Maruthamuthu, Sol. Energy Mater. 92, 929 (2008)

    Article  CAS  Google Scholar 

  24. F.B. Li, X.Z. Li, Chemosphere 48, 1103 (2002)

    Article  CAS  Google Scholar 

  25. O. Akhavan, E. Ghaderi, Surf. Coat. Technol. 204, 3676 (2010)

    Article  CAS  Google Scholar 

  26. C.R. Daiane, A.G.T. Magno, V.B.Z. Maria, Fuel 88, 105 (2009)

    Article  Google Scholar 

  27. I.H. Tseng, W.C. Chang, C.S. Wu, Appl. Catal. B 37, 37 (2002)

    Article  CAS  Google Scholar 

  28. H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Catal. Today 45, 221 (1998)

    Article  CAS  Google Scholar 

  29. S.S. Tan, L. Zou, E. Hu, Catal. Today 115, 269 (2006)

    Article  CAS  Google Scholar 

  30. Y. Zang, R. Farnood, Appl. Catal. 79, 334 (2008)

    Article  CAS  Google Scholar 

  31. S. Zhang, L. Song, Catal. Commun. 10, 1725 (2009)

    Article  CAS  Google Scholar 

  32. M.A. Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, X.-Z. Li, Catal. Today 175, 256 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Swaminathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velmurugan, R., Swaminathan, M. A study of mechanism and operational parameters on solar light-induced degradation of Reactive Red 120 dye with AgBr-loaded TiO2 . Res Chem Intermed 41, 1227–1241 (2015). https://doi.org/10.1007/s11164-013-1268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1268-z

Keywords

Navigation