Skip to main content
Log in

Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with guanidine polymers or mercaptopropyltrimethoxysilane: synthesis, characterization, and applications

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

A Correction to this article was published on 20 November 2023

This article has been updated

Abstract

Mesoporous thiol and guanidine-modified silicas with narrow pore size distribution have been prepared by the sol–gel technique. The surface area of the silicas was modified by treatment with 3-mercaptopropyltrimethoxysilane (MPTMS) and the guanidine polymers polyacrylate guanidine (PAG) and polymethacrylate guanidine (PMAG). The mesoporous silicas were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, and laser diffraction. The materials obtained were used as adsorbents for removing heavy metal ions (Cu2+) from water. It was found that modification of the silica surface by treatment with MPTMS and guanidine polymers provides new sorbents with high adsorption capacity compared with unmodified silica. The equilibrium adsorption capacity for Cu2+ ions on the surface of silicas modified by PAG and PMAG was 65 and 99.8 mg/g, respectively. Moreover, the modified silicas were tested for antimicrobial activity, in vitro, against the Gram-positive prokaryote Staphylococcus aureus and the Gram-negative prokaryote Escherichia coli. The results showed that only silica modified with guanidine polymers had high antimicrobial activity. To summarize, silica modified by treatment with guanidine polymers is more effective than thiol-modified silica for removing heavy metal ions from aqueous solution and can also be used as a biocide for surface sterilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. P. Polroniczak, S. Kowalak, J Porous Mater 18, 703 (2001)

    Article  Google Scholar 

  2. W. Shengju, F. Li, X. Ran, S. Wei, G. Li, J Nanopart Res 12, 2111 (2010)

    Article  Google Scholar 

  3. D. Liu, J.H. Lei, L.P. Guo, X.D. Du, K. Zeng, Microporous Mesoporous Mater 117, 67 (2009)

    Article  CAS  Google Scholar 

  4. B. Thomas, N. Baccile, S. Masse, C. Rondel, I. Alric, J Sol-Gel Sci Technol 58, 170 (2011)

    Article  CAS  Google Scholar 

  5. L.K. Neudachina, A.Y. Golub, Y.G. Yatluk, V.A. Osipova, Y.A. Berdyugin, E.M. Gorbunova, L.V. Adamova, Inorg Mater 47, 435 (2011)

    Article  CAS  Google Scholar 

  6. N.V. Guzenko, O.E. Voronina, N.N. Vlasova, E.F. Voronin, J. Appl. Spectr. 71, 141 (2004)

    Article  Google Scholar 

  7. M. Zougagh, J.M. Cano Pavon, A. Garcia de Torres, Anal Bioanal Chem 381, 1103 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. Y.C. Feng, Y. Meng, F.X. Li, Z. Ping, J.W. Xue, J Porous Mater (2013). doi:10.1007/s10934-012-9617-7

    Article  Google Scholar 

  9. A. Morikawa, Y. Yamaguchi, H. Kakimoto, Y. Imai, Chem Mater 6, 913 (1994)

    Article  CAS  Google Scholar 

  10. A. Faliagas, J. Sfyrakis, J. Simitzis, J Mater Sci 31, 199 (1996)

    Article  CAS  Google Scholar 

  11. E. Guerrero et al., J Porous Mater (2012). doi:10.1007/s10934-012-9608-8

    Article  Google Scholar 

  12. S.B. Savvin, V.P. Dedkova, O.P. Shvoeva, Russ Chem Rev 69, 187 (2000)

    Article  CAS  Google Scholar 

  13. N. Sivov, S. Khashirova, Y. Malkanduev, M. Baidaeva, Modern Tendencies Org Bioorga Chem 27, 310 (2008)

    Google Scholar 

  14. S. Asuha et al., J Porous Mater 18, 581 (2011)

    Article  CAS  Google Scholar 

  15. L.L. Hench, K. Jon, West Chem. Rev. 90, 33 (1990)

    Article  CAS  Google Scholar 

  16. J. Brunauer, P. Emmet, E. Teller, J Am Chem Soc 60, 309 (1938)

    Article  CAS  Google Scholar 

  17. E.P. Barrett, L.G. Joyner, P. Halenda, Ibid 73, 373 (1951)

    CAS  Google Scholar 

  18. Z. Cheng, A. Yasukawa, K. Kandori, T. Ishikawa, J. Chem. Soc. FaradayTrans. 94, 1501 (1998)

    Google Scholar 

  19. Y. Xu, L. Axe, J Colloid Interface Sci 282, 11 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. J. Mohan, Organic Spectroscopy: Principles and Applications, 2nd edn. (Narosa Publishing House, New Delhi, 2008), p. 548

    Google Scholar 

  21. X.M. Xue, F.T. Li, Microporous Mesoporous Mater. 116, 116 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr Khashirova S. Yu., Department of Macromolecular Compounds, The Kabardino-Balkar State University by N. M. Berbekova, for synthesis of guanidine polymers. The work is supported by the Grant of the RFBR (Project No. 12-03-31309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Timin.

Additional information

The original online version of this article was revised: The figure 3 caption is corrected as "FTIR spectra: unmodified silica (1), PAG-modified silica (2), PMAG-modified silica (3)”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timin, A., Rumyantsev, E. Novel biocide multifunctional materials based on mesoporous silicas modified by treatment with guanidine polymers or mercaptopropyltrimethoxysilane: synthesis, characterization, and applications. Res Chem Intermed 41, 2437–2451 (2015). https://doi.org/10.1007/s11164-013-1358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1358-y

Keywords

Navigation