Skip to main content
Log in

Visible light-induced photodegradation of rhodamine dyes over BiOCl, and the vital importance of the frontier orbital energy of the dye molecules in the reaction kinetics

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The interfacial adsorption process and the white-light-induced photosensitized degradation of different rhodamine dyes (rhodamine B, rhodamine 6G, and rhodamine 101) on the wide-band-gap semiconductor BiOCl have been investigated. Adsorption of all the rhodamine molecules on BiOCl is an exothermic process and the saturated adsorption capacities were best deduced by Langmuir model fitting. By using quantum chemical calculations (Gaussian 03 software), the relationship between the frontier orbital energy of the dye molecules and the rate of photodegradation was also established. The calculated absolute value of E LUMO was found to increase in the order Rh 101 < Rh 6G < RhB, which was similar to the trend of photodegradation reaction kinetics rate fitted by use of the pseudo-zero-order kinetics model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Jain, M. Mathur, S. Sikarwar, A. Mittal, J. Environ. Manage. 85, 956 (2007)

    Article  CAS  Google Scholar 

  2. T. Shimada, H. Yamazaki, M. Mimura, Y. Inui, F.P. Guengerich, J. Pharmacol. Exp. Ther. 270, 414 (1994)

    CAS  Google Scholar 

  3. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Water Res. 44, 2997 (2010)

    Article  CAS  Google Scholar 

  4. C. Mccullagh, J.M.C. Robertson, D.W. Bahnemann, P.K.J. Robertson, Res. Chem. Intermed. 33, 359 (2007)

    Article  CAS  Google Scholar 

  5. K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B Environ. 68, 125 (2006)

    Article  CAS  Google Scholar 

  6. Y.Q. Lei, G.H. Wang, S.Y. Song, W.Q. Fan, H.J. Zhang, CrystEngComm 11, 1857 (2009)

    Article  CAS  Google Scholar 

  7. L. Zhang, W.Z. Wang, L. Zhou, M. Shang, S.M. Sun, Appl. Catal. B Environ. 90, 458 (2009)

    Article  CAS  Google Scholar 

  8. C.H. Wang, C.L. Shao, Y.C. Liu, L.N. Zhang, Scripta Mater. 59, 332 (2008)

    Article  CAS  Google Scholar 

  9. S.J. Wu, C. Wang, Y.F. Cui, T.M. Wang, B.B. Huang, X.Y. Zhang, X.Y. Qin, P. Brault, Mater. Lett. 64, 115 (2010)

    Article  CAS  Google Scholar 

  10. X. Zhang, Z.H. Ai, F.L. Jia, L.Z. Zhang, J. Phys. Chem. C 112, 747 (2008)

    Article  CAS  Google Scholar 

  11. H.Z. An, Y. Du, T.M. Wang, C. Wang, W.C. Hao, J.Y. Zhang, Rare Met. 27, 243 (2008)

    Article  CAS  Google Scholar 

  12. M.A. Gondal, X.F. Chang, A.A. Al-Saadi, Z.H. Yamani, J. Zhang, G.B. Ji, J. Environ. Sci. Heal. A 47, 1192 (2012)

    Article  CAS  Google Scholar 

  13. M.A. Gondal, X.F. Chang, M.A. Ali, Z.H. Yamani, Q. Zhou, G.B. Ji, Appl. Catal. A Gen. 397, 192 (2011)

    Article  CAS  Google Scholar 

  14. M.A. Gondal, X.F. Chang, Z.H. Yamani, Chem. Eng. J. 165, 250 (2010)

    Article  CAS  Google Scholar 

  15. M.A. Gondal, T. Hussain, Z.H. Yamani, M.A. Baig, J. Hazard. Mater. 163, 1265 (2009)

    Article  CAS  Google Scholar 

  16. M.A. Gondal, Z.S. Seddigi, M.M. Nasr, B. Gondal, J. Hazard. Mater. 175, 726 (2010)

    Article  CAS  Google Scholar 

  17. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Wallingford CT, Gaussian 03, Revision E.01, (2004)

  18. H. Jiang, E. Engel, J. Chem. Phys. 125, 184108 (2006)

    Article  Google Scholar 

  19. B.H. Hameed, A.A. Ahmad, N. Aziz, Chem. Eng. J. 133, 195 (2007)

    Article  CAS  Google Scholar 

  20. A. Ozcan, E.M. Oncu, A.S. Ozcan, Colloid. Surface. A 277, 90 (2006)

    Article  Google Scholar 

  21. H.L. Nie, T.X. Chen, L.M. Zhu, Sep. Purif. Technol. 57, 121 (2007)

    Article  CAS  Google Scholar 

  22. H. Seshadri, M. Cheralathan, P.K. Sinha, Res. Chem. Intermed. 39, 991 (2013)

    Article  CAS  Google Scholar 

  23. J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, N. Serpone, Environ. Sci. Technol. 32, 2394–2400 (1998)

    Article  CAS  Google Scholar 

  24. G.M. Liu, T.X. Wu, J.C. Zhao, Environ. Sci. Technol. 33, 2081 (1999)

    Article  CAS  Google Scholar 

  25. G.M. Liu, X.Z. Li, J.C. Zhao, S. Horikoshi, H. Hidaka, J. Mol. Catal. A: Chem. 153, 221 (2000)

    Article  CAS  Google Scholar 

  26. M. Sauer, J. Hofkens, J, 1st edn. (Wiley-VCH, Enderlein, 2011)

    Google Scholar 

  27. M.A. Gondal, X.F. Chang, M.A. Ali, Z.H. Yamani, Q. Zhou, G.B. Ji, Appl. Catal. A. Gen. 397, 192 (2011)

    Article  CAS  Google Scholar 

  28. M.A. Butler, D.S. Ginley, J. Electrochem. Soc. 125, 228 (1978)

    Article  CAS  Google Scholar 

  29. D.F. Wang, T. Kako, J.H. Ye, J. Am. Chem. Soc. 30, 2724 (2008)

    Article  Google Scholar 

  30. Atomic spectra database lines form NIST, http://physics.nist.gov/PhysRefData/ASD/lines_form.html

  31. F. Chen, H. Liu, S. Bagwasi, X. Shen, J. Zhang, J. Photoch, Photobio. A 215, 76 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support under project # R15-CW-11 (MIT11109 and MIT11110) by KFUPM is highly appreciated. This work was partially supported by the National Natural Science Foundation of China (51172044), the National Science Foundation of Jiangsu Province of China (BK2011617), and the 333 project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Gondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, K., Gondal, M.A., Al-Saadi, A.A. et al. Visible light-induced photodegradation of rhodamine dyes over BiOCl, and the vital importance of the frontier orbital energy of the dye molecules in the reaction kinetics. Res Chem Intermed 41, 2753–2766 (2015). https://doi.org/10.1007/s11164-013-1384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-013-1384-9

Keywords

Navigation