Skip to main content
Log in

Enhancement of the photoluminescence and long afterglow properties of Ca2MgSi2O7:Eu2+ phosphor by Dy3+ co-doping

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) techniques. The luminescence properties were investigated using thermoluminescence (TL), photoluminescence (PL), long afterglow, mechanoluminescence (ML), and ML spectra techniques. The crystal structure of sintered phosphors was an akermanite type structure, which belongs to the tetragonal crystallography. TL properties of these phosphors were investigated, and the results were also compared. Under the ultraviolet excitation, the emission spectra of both prepared phosphors were composed of a broad band peaking at 535 nm, belonging to the broad emission band. When the Ca2MgSi2O7:Eu2+ phosphor is co-doped with Dy3+, the PL, afterglow and ML intensity is strongly enhanced. The decay graph indicates that both the sintered phosphors contain fast decay and slow decay process. The ML intensities of Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+, Dy3+ phosphors were proportionally increased with the increase of impact velocity, which suggests that this phosphor can be used as sensors to detect the stress of an object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Melendrez, O. Arellano Tanori, M. Pedroza Montero, W.M. Yen, M. Barboza Flores, J. Lumin. 129, 679–685 (2009)

    Article  CAS  Google Scholar 

  2. I.P. Sahu, D.P. Bisen, N. Brahme, R. Sharma, Res. Chem. Intermed. (2014). doi:10.1007/s11164-014-1767-6

  3. H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, J. Lumin. 131, 2441–2445 (2011)

    Article  CAS  Google Scholar 

  4. N. Lakshminarasimhan, U.V. Varadaraju, Mater. Res. Bull. 43, 2946–2953 (2008)

    Article  CAS  Google Scholar 

  5. H.W. Leverenz, An Introduction to Luminescence of Solids (Dover Publications Inc, New York, 1968)

    Google Scholar 

  6. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.H. Whangbo, A. Garcia, T. Le Mercier, Chem. Mater. 17, 3904–3912 (2005)

    Article  CAS  Google Scholar 

  7. H. Wu, Y. Hu, L. Chen, X. Wang, J. Alloys Compd. 509, 4304–4307 (2011)

    Article  CAS  Google Scholar 

  8. Y. Marayama, N. Takeuchi, Y. Aoki, T. Matsuzawa U.S. Patent 5,424,006 (1995)

  9. J.M. Ngaruiya, S. Nieuwoudt, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, Mater. Lett. 62, 3192–3194 (2008)

    Article  CAS  Google Scholar 

  10. Z. Xiao, U.S. Patent 6,093,346 (2000)

  11. Y. Xu, D. Chen, Ceram. Int. 34, 2117–2120 (2008)

    Article  CAS  Google Scholar 

  12. R. Shrivastava, J. Kaur, Chin. Chem. Lett. (2015). doi:10.1016/j.cclet.2015.05.028

  13. C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 1236–1238 (1999)

    Article  CAS  Google Scholar 

  14. C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Mater. Res. Bull. 34, 1491–1500 (1999)

    Article  CAS  Google Scholar 

  15. C.N. Xu, T. Wantanabe, M. Akiyama, X.G. Zheng, Appl. Phys. Lett. 74, 2414–2416 (1999)

    Article  CAS  Google Scholar 

  16. C.N. Xu, X.G. Zheng, M. Akiyama, K. Nonaka, T. Wantanabe, Appl. Phys. Lett. 76, 179–181 (2000)

    Article  CAS  Google Scholar 

  17. C.N. Xu, X.G. Zheng, T. Wantanabe, M. Akiyama, I. Usui, Thin Solid Films 352, 273–278 (1999)

    Article  CAS  Google Scholar 

  18. M. Kowatari, D. Koyama, Y. Satoh, K. Iinuma, S. Uchida, Nucl. Instr. Meth. B 480, 431–439 (2002)

    Article  CAS  Google Scholar 

  19. T.Z. Zhang, Q. Su, J. SID. 8, 27–30 (2000)

    Google Scholar 

  20. J. Qiu, K. Miura, H. Inouye, Appl. Phys. Lett. 73, 1763–1765 (1998)

    Article  CAS  Google Scholar 

  21. C.Y. Li, Y.N. Yu, S.B. Wang, Q. Su, J. Non-Cryst. Solids. 321, 191–196 (2003)

    Article  CAS  Google Scholar 

  22. A. Nag, T.R.N. Kutty, Mater. Res. Bull. 39, 331–342 (2004)

    Article  CAS  Google Scholar 

  23. T. Katsumata, R. Sakai, S. Komuro, T. Morikawa, J. Electrochem. Soc. 150, 111–114 (2003)

    Article  Google Scholar 

  24. M. Mashangva, M.N. Singh, T.B. Singh, Indian J. Pure Appl. Phys. 49, 583–589 (2011)

    Google Scholar 

  25. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 38, 68–76 (2015)

    Article  CAS  Google Scholar 

  26. I.P. Sahu, D.P. Bisen, N. Brahme, M. Ganjir, Lumin. J. Biol. Chem. Lumin. (2015). doi:10.1002/bio.2900

    Google Scholar 

  27. Z. Yuan, C. Chang, D. Mao, W. Ying, J. Alloys Compd. 377(1–2), 268–271 (2004)

    Article  CAS  Google Scholar 

  28. H. Kubo, H. Aizawa, T. Katsumata, S. Komuro, T. Morikawa, J. Cryst. Growth 275(12), 1767–1771 (2005)

    Article  Google Scholar 

  29. V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminescence (Springer, Newyork, 2006)

    Google Scholar 

  30. R. Chen, S.W.S. Mckeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific, Singapore, 1997)

    Book  Google Scholar 

  31. A.U. Pawar, A.P. Jadhav, U. Pal, B.K. Kim, Y.S. Kang, J. Lumin. 132, 659–664 (2012)

    Article  CAS  Google Scholar 

  32. I.P. Sahu, D.P. Bisen, N. Brahme, L. Wanjari, R.K. Tamrakar, Res. Chem. Intermed. (2015). doi:10.1007/s11164-015-1929-1

  33. T. Aitasalo, P. Daren, J. Holsa, K. Junger, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, J. Solid State Chem. 171, 114–122 (2003)

    Article  CAS  Google Scholar 

  34. K.V. Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536–2566 (2010)

    Article  Google Scholar 

  35. D.R. Vij, Luminescence of Solids (Plenum Press, New York, 1998)

    Book  Google Scholar 

  36. I.P. Sahu, D.P. Bisen, N. Brahme, Lumin. J. Biol. Chem. Lumin. (2014). doi:10.1002/bio.2771

    Google Scholar 

  37. I.P. Sahu, D.P. Bisen, N. Brahme, Displays 35, 279–286 (2014)

    Article  CAS  Google Scholar 

  38. B.P. Chandra, R.A. Rathore, Cryst. Res. Tech. 30, 885–896 (1995)

    Article  CAS  Google Scholar 

  39. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Thin Solid Films 518, 610–613 (2009)

    Article  CAS  Google Scholar 

  40. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Int. J. Mod. Phys. B 23, 1028–1033 (2009)

    Article  CAS  Google Scholar 

  41. H. Zhang, H. Yamada, N. Terasaki, C.N. Xu, Phys. E 42, 2872–2875 (2010)

    Article  CAS  Google Scholar 

  42. A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting (Wiley, New York, 2002)

    Google Scholar 

  43. CIE 1931. International Commission on Illumination. Publication CIE no. 15 (E-1.3.1) 1931

  44. I.P. Sahu, D.P. Bisen, N. Brahme, J. Radiat. Res. Appl. Sci. 8, 104–109 (2015)

Download references

Acknowledgments

We are very much grateful to the UGC-DAE Consortium for Scientific Research, Indore (M.P.) for the XRD characterization, and we are also very much thankful to Dr. Mukul Gupta for his cooperation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishwar Prasad Sahu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, I.P., Bisen, D.P., Tamrakar, R.K. et al. Enhancement of the photoluminescence and long afterglow properties of Ca2MgSi2O7:Eu2+ phosphor by Dy3+ co-doping. Res Chem Intermed 42, 1823–1843 (2016). https://doi.org/10.1007/s11164-015-2120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2120-4

Keywords

Navigation