Skip to main content
Log in

Optimization of process parameters for rapid adsorption of Pb(II), Ni(II), and Cu(II) by magnetic/talc nanocomposite using wavelet neural network

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Artificial neural networks have been widely used to solve problems because of their reliable, robust, and salient characteristics in capturing nonlinear relationships between variables in complex systems. In this study, a wavelet neural network (WNN) based on the incremental backpropagation (IBP) algorithm was used in conjunction with an experimental design. To optimize the network, independent variables including ion concentration, adsorbent dose, and removal time were used as input parameters, while the removal percentage of Pb(II), Ni(II), and Cu(II) by magnetic/talc nanocomposite were selected as outputs. The network was trained by the IBP and four other algorithms as a model. To determine the number of hidden-layer nodes in the model, the root-mean-square error of a testing set was minimized. After minimizing this error, the topologies of the algorithms were compared based on the coefficient of determination and absolute average deviation. This comparison indicated that the IBP algorithm had the minimum root-mean-square error and absolute average deviation, and maximum coefficient of determination, for the test dataset. The importance values included 35.16 % for initial ion concentration, 32.74 % for adsorbent dose, and 32.11 % for removal time, showing that none of these were negligible. These results show that the WNN has great potential ability for prediction of removal of heavy-metal ions from aqueous solution with residual standard error less than 1.2 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Bingöl, M. Hercan, S. Elevli, E. Kılıç, Bioresour. Technol. 112, 111–115 (2012)

    Article  Google Scholar 

  2. K.E. Bremmell, J. Addai-Mensah, J. Colloid Interface Sci. 283(2), 385–391 (2005)

    Article  CAS  Google Scholar 

  3. L. Castillo, S. Barbosa, N. Capiati, J. Appl. Polym. Sci. 126(5), 1763–1772 (2012)

    Article  CAS  Google Scholar 

  4. F.-T. Chau, Y.-Z. Liang, J. Gao, X.-G. Shao, Chemometrics: from basics to wavelet transform, vol. 234 (Wiley, New York, 2004)

    Book  Google Scholar 

  5. N. Chaudhary, C. Balomajumder, J. Taiwan Inst. Chem. Eng. 45(3), 852–859 (2014)

    Article  CAS  Google Scholar 

  6. V.S. Chauhan, N.K. Bhardwaj, S.K. Chakrabarti, Can. J. Chem. Eng. 91(5), 855–861 (2013)

    Article  CAS  Google Scholar 

  7. D. Feng, C. Aldrich, H. Tan, Hydrometallurgy 56(3), 359–368 (2000)

    Article  CAS  Google Scholar 

  8. Q. Feng, Q. Lin, F. Gong, S. Sugita, M. Shoya, J. Colloid Interface Sci. 278(1), 1–8 (2004)

    Article  CAS  Google Scholar 

  9. F. Geyikçi, E. Kılıç, S. Çoruh, S. Elevli, Chem. Eng. J. 183, 53–59 (2012)

    Article  Google Scholar 

  10. A. Ghaffari, H. Abdollahi, M.R. Khoshayand, I. Soltani Bozchalooi, Int. J. Pharm. 327, 126–138 (2006)

    Article  CAS  Google Scholar 

  11. J.-L. Gong, B. Wang, G.-M. Zeng, C.-P. Yang, C.-G. Niu, Q.-Y. Niu et al., J. Hazard. Mater. 164(2), 1517–1522 (2009)

    Article  CAS  Google Scholar 

  12. J. Hu, I. Lo, G. Chen, Water Sci. Technol. 50(12), 139–146 (2004)

    CAS  Google Scholar 

  13. P. Huang, D.W. Fuerstenau, Colloids Surf. A 177(2), 147–156 (2000)

    Google Scholar 

  14. D.-L. Huang, G.-M. Zeng, C.-L. Feng, S. Hu, X.-Y. Jiang, L. Tang et al., Environ. Sci. Technol. 42(13), 4946–4951 (2008)

    Article  CAS  Google Scholar 

  15. D.-L. Huang, R.-Z. Wang, Y.-G. Liu, G.-M. Zeng, C. Lai, P. Xu et al., Environ. Sci. Pollut. Res. 22(2), 963–977 (2015)

    Article  CAS  Google Scholar 

  16. K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Sep. Purif. Technol. 24(3), 497–505 (2001)

    Article  CAS  Google Scholar 

  17. K. Kalantari, M. B. Ahmad, K. Shameli, R. Khandanlou, Res. Chem. Intermed. 41(4), 1–13 (2013a)

  18. K. Kalantari, M.B. Ahmad, K. Shameli, R. Khandanlou, Int. J. Nanomed. 8, 1817 (2013b)

    Google Scholar 

  19. K. Kalantari, M.B. Ahmad, H.R.F. Masoumi, K. Shameli, M. Basri, R. Khandanlou, Int. J. Mol. Sci. 15(7), 12913–12927 (2014)

    Article  CAS  Google Scholar 

  20. M. Kasiri, H. Aleboyeh, A. Aleboyeh, Environ. Sci. Technol. 42(21), 7970–7975 (2008)

    Article  CAS  Google Scholar 

  21. R. Khandanlou, M. B. Ahmad, H. R. F. Masoumi, K. Shameli, M. Basri, K. Kalantari, PloS One 10(3), 1–19 (2015)

  22. H.R. Fard Masoumi, A. Kassim, M. Basri, D.K. Abdullah, M.J. Haron, Molecules 16(7), 5538–5549 (2011)

    Article  CAS  Google Scholar 

  23. H.R. Fard Masoumi, M. Basri, A. Kassim, D.K. Abdullah, Y. Abdollahi, S.S.A. Gani et al., J. Ind. Eng. Chem. 20(4), 1973–1976 (2014)

    Article  Google Scholar 

  24. E. D. W. Regulations, Maximum contaminant level goals and national primary drinking water regulations for lead and copper; final rule. Fed. Regist. 56 (1991)

  25. X. Song, A. Mitnitski, C. MacKnight, K. Rockwood, J. Am. Geriatr. Soc. 52(7), 1180–1184 (2004)

    Article  Google Scholar 

  26. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao et al., Sci. Total Environ. 424, 1–10 (2012)

    Article  CAS  Google Scholar 

  27. P. Xu, G.M. Zeng, D.L. Huang, C. Lai, M.H. Zhao, Z. Wei et al., Chem. Eng. J. 203, 423–431 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katayoon Kalantari or Mansor B. Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darajeh, N., Fard Masoumi, H.R., Kalantari, K. et al. Optimization of process parameters for rapid adsorption of Pb(II), Ni(II), and Cu(II) by magnetic/talc nanocomposite using wavelet neural network. Res Chem Intermed 42, 1977–1987 (2016). https://doi.org/10.1007/s11164-015-2129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2129-8

Keywords

Navigation