Skip to main content
Log in

Calcination temperature-dependent morphology of photocatalytic ZnO nanoparticles prepared by an electrochemical–thermal method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm−1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g−1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol−1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  2. Z.L. Wang, J. Phys. Condens. Matter 16, 829 (2004)

    Article  CAS  Google Scholar 

  3. C. Lizama, J. Freer, J. Baeza, H.D. Mansilla, Catal. Today 76, 235 (2002)

    Article  CAS  Google Scholar 

  4. K. Qingshan, G. Chunxiang, S. Yuling, W. Haijuan, J. Quan, X. Yanzhi, Rare Met. 30, 213 (2011)

    Article  Google Scholar 

  5. M. Rajamathi, S. Thimmaiah, P.E.D. Morgan, P. Seshadri, J. Mater. Chem. 11, 2489 (2001)

    Article  CAS  Google Scholar 

  6. K. Zhu, B. Yue, W. Zhou, H. He, Chem. Commun. 1, 98 (2001)

    Google Scholar 

  7. Y.Q. Wang, C.M. Yang, W. Schmidt, B. Spliethoff, E. Bill, F. Schuth, Adv. Mater. 17, 53 (2005)

    Article  CAS  Google Scholar 

  8. J. Sarkar, V.T. John, J. He, C. Brooks, D. Gandhi, A. Nunes, G. Ramanath, A. Bose, Chem. Mater. 20, 5301 (2008)

    Article  CAS  Google Scholar 

  9. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992)

    Article  CAS  Google Scholar 

  10. C. Suwanchawalit, S. Wongnawa, J. Nanopart. Res. 12, 2895 (2010)

    Article  CAS  Google Scholar 

  11. Z. Niu, Y. Li, Chem. Mater. 26, 72 (2014)

    Article  CAS  Google Scholar 

  12. S.K. Pardeshi, A.B. Patil, J. Mol. Catal. A Chem. 308, 32 (2009)

    Article  CAS  Google Scholar 

  13. C.W. Kim, U. Pal, S. Park, Y.H. Kim, J. Kim, Y.S. Kang, RSC Adv. 2, 11969 (2012)

    Article  CAS  Google Scholar 

  14. K.G. Chandrappa, T.V. Venkatesha, K. Vathsala, C. Shivakumara, J. Nanopart. Res. 12, 2667 (2010)

    Article  CAS  Google Scholar 

  15. C.K. Govindappa, V.T. Venkatarangaiah, S.B.A. Hamid, Nano-Micro Lett. 5, 101 (2013)

    Article  CAS  Google Scholar 

  16. R. Wahab, S.G. Ansari, Y.S. Kim, M.A. Dar, H.S. Shin, J. All. Comp. 461, 66 (2008)

    Article  CAS  Google Scholar 

  17. S. Syeeda, M.S. Miran, M.Y.A. Mollah, M.M. Rahman, J. Bangladesh Chem. Soc. 21, 129 (2008)

    Google Scholar 

  18. P. Ahmed, M.S. Miran, M.A.B.H. Susan, M.Y.A. Mollah, J. Bangladesh Chem. Soc. 26, 60 (2013)

    Google Scholar 

  19. S.S. Satter, M. Hoque, M.M. Rahman, M.Y.A. Mollah, M.A.B.H. Susan, RSC Adv. 4, 20612 (2014)

    Article  CAS  Google Scholar 

  20. A. Escobedo-Morales, D. Téllez-Flores, M.L.R. Peralta, J. Garcia-Serrano, A.M. Herrera-González, E. Rubio-Rosas, E. Sánchez-Mora, O.O. Xometl, Mater. Chem. Phys. 151, 282 (2015)

    Article  CAS  Google Scholar 

  21. F. Hassan, M.S. Miran, H.A. Simol, M.A.B.H. Susan, M.Y.A. Mollah, Bangladesh J. Sci. Ind. Res. 50, 21 (2015)

    Article  Google Scholar 

  22. S. Zhaorigetu, Y. Hongxia. Garidi, Front. Chem. China 3, 277 (2006)

    Google Scholar 

  23. V. Vágvölgyi, M. Hales, W. Martens, J. Kristóf, E. Horváth, R.L. Frost, J. Therm. Anal. Calorim. 92, 911 (2008)

    Article  Google Scholar 

  24. Z. Xianxi, W. Xiaojuan, Z. Guanjie, J. Jianzhuang, Chin. J. Inorg. Chem. 18, 1038–1040 (2002)

    Google Scholar 

  25. Y. Wang, S. Zhang, S. Bi, G. Luo, Powder Technol. 202, 130 (2010)

    Article  CAS  Google Scholar 

  26. M.H. Rashid, M. Raula, R.R. Bhattacharjee, T.K. Mandal, J. Colloid Interface Sci. 339, 249 (2009)

    Article  CAS  Google Scholar 

  27. Y. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063 (1996)

    Article  CAS  Google Scholar 

  28. V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 1 (2012)

    Article  Google Scholar 

  29. J. Cheng, K.M. Poduska, Nanomaterials 3, 317 (2013)

    Article  CAS  Google Scholar 

  30. C. Liewhiran, S. Phanichphant, J. Microsc. Soc. Thail. 20, 49 (2006)

    Google Scholar 

  31. D. Dollimore, P. Spooner, Trans. Faraday Soc. 67, 2750 (1971)

    Article  CAS  Google Scholar 

  32. J.T. Cahill, J.N. Ruppert, B. Wallis, Y. Liu, O.A. Graeve, Langmuir 30, 5585 (2014)

    Article  CAS  Google Scholar 

  33. O.A. Graeve, A. Madadi, R. Kanakala, K. Sinha, Metall. Mater. Trans. A 41, 2691 (2010)

    Article  Google Scholar 

  34. D. Louer, R. Vargas, J.P. Auffredic, J. Am. Ceram. Soc. 67, 136 (1984)

    Article  CAS  Google Scholar 

  35. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985)

    Article  CAS  Google Scholar 

  36. G. Leofantia, M. Padovanb, G. Tozzolac, B. Venturelli, Catal. Today 41, 207 (1998)

    Article  Google Scholar 

  37. X. Wang, Y. Zhang, C. Hao, F. Feng, H. Yin, N. Si, Ind. Eng. Chem. Res. 53, 6585 (2014)

    Article  CAS  Google Scholar 

  38. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)

    Article  CAS  Google Scholar 

  39. J.P. Auffrédic, A. Boultif, J.I. Langford, D. Louër, J. Am. Ceram. Soc. 78, 323 (1995)

    Article  Google Scholar 

  40. P.D.L. Mercera, J.G.V. Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross, Appl. Catal. 57, 127 (1990)

    Article  CAS  Google Scholar 

  41. F. Li, L. Chen, Z. Chen, J. Xu, J. Zhu, X. Xin, Mater. Chem. Phys. 73, 335 (2002)

    Article  CAS  Google Scholar 

  42. W.H. Lai, L.G. Teoh, Y.H. Su, J. Shieh, M.H. Hon, J. Am. Ceram. Soc. 90, 4073 (2007)

    CAS  Google Scholar 

  43. O.J. Whittemore, Powder Technol. 29, 167 (1981)

    Article  CAS  Google Scholar 

  44. A.S. Edelstein, R.C. Cammarata, Nanomaterials Synthesis, Properties and Applications, 1st edn. (IOP Publishing Ltd, UK, 1996)

    Book  Google Scholar 

  45. R. Pampuch, K. Haberko, Agglomerates in ceramic, micropowders and their behaviour on cold pressing and sintering, in Ceramic Powders, ed. by P. Vincenzini (Elsevier, Amsterdam, 1983), pp. 623–634

    Google Scholar 

  46. J. Haber, Pure Appl. Chem. 63, 1227 (1991)

    Article  Google Scholar 

  47. B.D. Zdravkov, J.J. Čermák, M. Šefara, J. Janků, Cent. Eur. J. Chem. 5, 385 (2007)

    CAS  Google Scholar 

  48. L. Zhonghao, A. Gebner, J.P. Richters, J. Kalden, T. Voss, C. K€ubel, A. Tauber, Adv. Mater. 20, 1279 (2008)

    Article  Google Scholar 

  49. S. Kaluza, M.K. Schröter, R.N. d’Alnoncourt, T. Reinecke, M. Muhler, Adv. Funct. Mater. 18, 3670 (2008)

    Article  CAS  Google Scholar 

  50. S. Polarz, A.V. Orlov, F. Schüth, A.H. Lu, Chem. Eur. J. 13, 592 (2007)

    Article  CAS  Google Scholar 

  51. G. Xiong, L. Luo, C. Li, X. Yang, Energy Fuels 23, 1342 (2009)

    Article  CAS  Google Scholar 

  52. D. Nicholson, Trans. Faraday Soc. 61, 990 (1965)

    Article  CAS  Google Scholar 

  53. G.F. Hüttig, Kolloid Z. 98, 263 (1942)

    Article  Google Scholar 

  54. S.J. Gregg, J. Chem. Soc. 3940 (1953). doi:10.1039/JR9530003940

  55. G.A. El-Shobaky, N.S. Petro, Surf. Technol. 13, 197 (1981)

    Article  CAS  Google Scholar 

  56. G.A. El-Shobaky, I.F. Hewaidy, T. El-Nabarawy, Surf. Technol. 12, 309 (1981)

    Article  CAS  Google Scholar 

  57. H.G. El-Shobakya, M. Mokhtarb, G.A. El-Shobaky, Appl. Catal. A Gen. 180, 335 (1999)

    Article  Google Scholar 

  58. N.A.M. Deraz, Colloid Surface. A 190, 251 (2001)

    Article  CAS  Google Scholar 

  59. N. Obradovic, S. Stevanovic, V. Zeljkovic, M.M. Ristic, Powder Metall. Met. Ceram. 48, 182 (2009)

    Article  CAS  Google Scholar 

  60. O. Mekasuwandumrong, P. Pawinrat, P. Praserthdam, J. Panpranot, Chem. Eng. J. 164, 77 (2010)

    Article  CAS  Google Scholar 

  61. N.M. Flores, U. Pal, R. Galeazzi, A. Sandovalb, RSC Adv. 4, 41099 (2014)

    Article  CAS  Google Scholar 

  62. H. Feng, M.H. Zhang, L.E. Yu, Appl. Catal. A Gen. 1413, 238 (2012)

    Article  Google Scholar 

  63. J.Z. Kong, A.D. Li, X.Y. Li, H.F. Zhai, W.Q. Zhang, Y.P. Gong, H. Li, D. Wu, J. Solid State Chem. 183, 1359 (2010)

    Article  CAS  Google Scholar 

  64. R.M. Mohamed, E.S. Baeissa, I.A.M. Khalid, M.A. Al-Rayyani, Appl Nano Sci. 3, 57 (2013)

    Article  CAS  Google Scholar 

  65. M.A. Ali, M.R. Idris, M.E. Quayum, J. Nanostruct. Chem. 3, 36 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support for a sub-project (CP-231) from the Higher Education Quality Enhancement Project of the University Grants Commission of Bangladesh financed by the World Bank and the Government of Bangladesh. Technical support from the Centre for Advanced Research in Sciences (CARS) of the University of Dhaka is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md. Abu Bin Hasan Susan or M. Yousuf A. Mollah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 640 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shohel, M., Miran, M.S., Susan, M.A.B.H. et al. Calcination temperature-dependent morphology of photocatalytic ZnO nanoparticles prepared by an electrochemical–thermal method. Res Chem Intermed 42, 5281–5297 (2016). https://doi.org/10.1007/s11164-015-2358-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2358-x

Keywords

Navigation