Skip to main content
Log in

Near-infrared DC approach by Bi3+–Yb3+ co-doped YAG phosphor

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Bi3+–Yb3+ ion pair co-doped YAG phosphors were successfully synthesized using conventional solid state reaction method varying the concentration of Yb3+ ions from 0.5 to 10 mol%. The optimum phosphors were characterized by powder X-ray diffraction (XRD), and surface morphology was studied with a scanning electronic microscope (SEM). The photoluminescence (PL) properties were studied with a spectrophotometers in near infrared (NIR) and ultraviolet visible (UV-Vis) regions. The synthesized phosphors can convert a photon of UV region (330 nm) into photons of NIR region (979 and 992 nm). The co-operative energy transfer (CET) was studied using a time decay curve and PL spectra. The theoretical value of quantum efficiency (QE) was calculated from steady time decay measurement, and the maximum efficiency approached up to 166.91 %. Hence, this phosphor could be used as a downconversion (DC) luminescent convertor in front of crystalline silicon solar cell (c-Si) panels to reduce heat loss due to spectral mismatch of the solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 173 (2013)

    Article  CAS  Google Scholar 

  2. N.S. Sawala, K.A. Koparkar, S.K. Omanwar, Int. J. Lumin. Appl. 5, 125 (2015)

    Google Scholar 

  3. U. Rambabu, S.-D. Han, Ceram. Int. 39, 1603 (2013)

    Article  CAS  Google Scholar 

  4. G.A. Hebbink, J.W. Stouwdam, D.N. Reinhoudt, F.C.J.M. Van Veggel, Adv. Mater. 14, 1147 (2002)

    Article  CAS  Google Scholar 

  5. M. Chun-Yan, L. Dong-Ping, L. Li-Fang, L. Xi-Xian, W. Kun, Chin. J. Spectrosc. Lab. 3, 563 (2004)

    Google Scholar 

  6. G. Lij, J.H. Lee, T. Mori, J. Ceram. Soc. Jpn. 108, 439 (2000)

    Article  Google Scholar 

  7. Y. Fang-li, R. Yuh, Mater. Sci. Eng. B 107, 14 (2004)

    Article  Google Scholar 

  8. R.R. Jacobs, W.F. Krupke, M.J. Weber, Appl. Phys. Lett. 33, 410 (1978)

    Article  CAS  Google Scholar 

  9. N.S. Sawala, K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, AIP Conf. Proc. 1728, 020250 (2016)

    Article  Google Scholar 

  10. C.B. Palan, N.S. Bajaj, A. Soni, S.K. Omanwar, J. Lumin. 176, 106 (2016)

    Article  CAS  Google Scholar 

  11. C.B. Palan, S.K. Omanwar, J. Lumin. 178, 340–346 (2016)

    Article  CAS  Google Scholar 

  12. C.B. Palan, N.S. Bajaj, S.K. Omanwar, Mater. Res. Bull. 76, 216 (2016)

    Article  CAS  Google Scholar 

  13. N.S. Bajaj, C.B. Palan, K.A. Koparkar, M.S. Kulkarni, S.K. Omanwar, J. Lumin. 175, 9 (2016)

    Article  CAS  Google Scholar 

  14. N.S. Sawala, S.K. Omanwar, Infrared Phys. Technol. (2016). doi:10.1016/j.infrared.2016.07.003

    Google Scholar 

  15. N.S. Sawala, N.S. Bajaj, S.K. Omanwar, Infrared Phys. Technol. 76, 271 (2016)

    Article  CAS  Google Scholar 

  16. B.J. Sundella, A.T. Shavera, Q. Liub, A. Nebipasagila, P. Pisipatia, S.J. Mechama, J.S. Rifflea, B.D. Freemanb, J.E. McGrath, Polym. 55, 5623 (2014)

    Article  Google Scholar 

  17. D. Chen, Y. Wang, Y. Yu, P. Huang, F. Weng, J. Appl. Phys. 104, 116105 (2008)

    Article  Google Scholar 

  18. J. Chen, H. Guo, Z. Li, H. Zhang, Y. Zhuang, Opt. Mater. 32, 998 (2010)

    Article  CAS  Google Scholar 

  19. W. Zhou, J. Yang, J. Wang, Y. Li, X. Kuang, J. Tang, H. Liang, Opt. Express 20, 510 (2012)

    Article  Google Scholar 

  20. X.Y. Huang, Q.Y. Zhang, J. Appl. Phys. 107, 063505 (2010)

    Article  Google Scholar 

  21. X.T. Wei, S. Huang, S. Huang, Y. Chen, C.X. Guo, M.W. Yin, J. Appl. Phys. 107, 103107 (2010)

    Article  Google Scholar 

  22. P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Phys. Rev. B: Condens. Matter 71, 014119 (2005)

    Article  Google Scholar 

  23. N.S. Sawala, K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Optik- Int. J. Light Electron Opt. 127, 4375 (2016)

    Article  CAS  Google Scholar 

  24. A.P. Jadhav, S. Khan, S.J. Kim, S.Y. Lee, J.K. Park, S.H. Cho, Res. Chem. Intermed. (2016). doi:10.1007/s11164-016-2427-9

    Google Scholar 

  25. N.S. Sawala, S.K. Omanwar, J. Alloys Compd. 686, 287 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors, Niraj S. Sawala, is thankful to the Chairman FIST-DST Project, SGBA University, Amravati (MH), PIN-444602 INDIA for providing the XRD facility for this work. The author is thankful to Dr. M. Krishnan (Head GCTL) and Dr. P. Nandi (GCTL) BARC, Mumbai (MH) INDIA for providing the FLS980 spectrophotometer facility to study PL in the NIR range. The author also thanks Dr. Prakash R. Somani, Applied Science Innovations Pvt. Ltd., Pune, Maharashtra, India for providing access to the SEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Sawala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawala, N.S., Omanwar, S.K. Near-infrared DC approach by Bi3+–Yb3+ co-doped YAG phosphor. Res Chem Intermed 43, 693–702 (2017). https://doi.org/10.1007/s11164-016-2646-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2646-0

Keywords

Navigation