Skip to main content
Log in

Characterization of ZnO–TiO2 and zinc titanate nanoparticles synthesized by hydrothermal process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Solutions containing zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and potassium titanium oxalate dihydrate (C4K2O9Ti·2H2O) with different molar ratios of Zn:Ti at a pH of 10 were hydrothermally processed at 120, 160, and 200 °C to form ZnO–anatase, ZnO–anatase–rutile and ZnO–rutile nanocomposites. Upon subsequent calcination the precursors at high temperatures, ZnTiO3, Zn2TiO4 , and Zn2Ti3O8 nanoparticles were synthesized. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectroscopy, Raman spectrophotometry, and photoluminescence (PL) spectroscopy revealed the existence of nanocomposites and nanoparticles with strong emission at 386 nm for Zn2TiO4 and Zn2Ti3O8 and at 370 nm for ZnTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.H. Tolbert, A.P. Alivisatos, Science 265, 373–376 (1994)

    Article  CAS  Google Scholar 

  2. K. Jacobs, D. Zaziski, E.C. Scher, A.B. Herhold, A.P. Alivisatos, Science 293, 1803–1806 (2001)

    Article  CAS  Google Scholar 

  3. O. Yayapao, S. Thongtem, A. Phuruangrat, T. Thongtem, Ceram. Int. 39, S563–S568 (2013)

    Article  CAS  Google Scholar 

  4. A. Phuruangrat, S. Mad-ahin, O. Yayapao, S. Thongtem, T. Thongtem, Res. Chem. Intermed. 41, 9757–9772 (2015)

    Article  CAS  Google Scholar 

  5. S.F. Bartram, R.A. Slepetys, J. Am. Ceram. Soc. 44, 493 (1961)

    Article  Google Scholar 

  6. G.H. Pan, T. Hayakawa, M. Nogami, Z. Hao, X. Zhang, X. Qu, J. Zhang, RSC Adv. 5, 88590 (2015)

    Article  CAS  Google Scholar 

  7. R. Ramaseshan, S. Ramakrishna, J. Am. Ceram. Soc. 90(6), 1836–1842 (2007)

    Article  CAS  Google Scholar 

  8. Z. Ali, S. Ali, I. Ahmad, I. Khan, H.A.R. Aliabad, Phys. B 420, 52–57 (2013)

    Article  Google Scholar 

  9. L. Budigi, M.R. Nasina, K. Shaik, S. Amaravadi, J. Chem. Sci. 127(3), 509–518 (2015)

    Article  CAS  Google Scholar 

  10. P. Sirajudheen, J. Mater. Sci. Eng. 5, 225 (2016)

    Google Scholar 

  11. H. Obayashi, Y. Sakurai, T. Gejo, J. Solid State Chem. 17, 299–303 (1976)

    Article  CAS  Google Scholar 

  12. T. Negas, T. Yeager, S. Bell, N. Coats, I. Minis, Am. Ceram. Soc. Bull. 72, 80–89 (1993)

    CAS  Google Scholar 

  13. C.D. Pinheiro, E. Longo, E.R. Leite, F.M. Pontes, R. Magnani, J.A. Varela, P.S. Pizanni, T.M. Boschi, F. Lanciotti, Appl. Phys. A Mater. 77, 81–85 (2003)

    Article  CAS  Google Scholar 

  14. D.M.A. Melo, A. Cesar, A.E. Martinelli, Z.R. Silva, E.R. Leite, E. Longo, P.S. Pizanni, J. Solid State Chem. 177, 670–674 (2004)

    Article  CAS  Google Scholar 

  15. E. Orhan, F.M. Pontes, M.A. Santos, E.R. Leite, A. Beltran, J. Andres, T.M. Boschi, P.S. Pizani, J.A. Varela, C.A. Taft, E. Longo, J. Phys. Chem. B 108, 9221–9227 (2004)

    Article  CAS  Google Scholar 

  16. F.M. Pontes, C.D. Pinheiro, E. Longo, E.R. Leite, S.R. de Lazaro, R. Magnani, P.S. Pizani, T.M. Boschi, F. Lanciotti, J. Lumin. 104, 175–185 (2003)

    Article  CAS  Google Scholar 

  17. P. Buffat, J. Borel, Phys. Rev. 13, 2287–2298 (1976)

  18. U. Steinike, B. Wallis, Cryst. Res. Technol. 32, 187 (1997)

    Article  CAS  Google Scholar 

  19. H.T. Kim, Y. Kim, M. Valant, D. Suvorov, J. Am. Ceram. Soc. 84, 1081 (2001)

    Article  CAS  Google Scholar 

  20. F.H. Dulin, D.E. Rase, J. Am. Ceram. Soc. 43, 125 (1960)

    Article  CAS  Google Scholar 

  21. L. Helm, A.E. Merbach, Chem. Rev. 105(6), 1923–1960 (2005)

  22. Powder Diffract. File, JCPDS-ICDD, 12 Campus Boulevard, Newtown Square, PA 19073-3273, USA (2001)

  23. N. Satoh, T. Nakashima, K. Yamamoto, Sci. Rep. 3, 1959 (2013)

    Article  Google Scholar 

  24. N. Nolan, M. Seery, S. Pillai, Chem. Mater. 23(6), 1496–1504 (2011)

    Article  CAS  Google Scholar 

  25. C. Alexsandra et al., J. Solid State Chem. 179, 985–992 (2006)

    Article  Google Scholar 

  26. R. Cuscό, E. Alarcόn-Lladό, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)

    Article  Google Scholar 

  27. K.-R. Zhu, M.-S. Zhang, Q. Chen, Z. Yin, Phys. Lett. A 340, 220–270 (2005)

    Article  CAS  Google Scholar 

  28. T. Santhaveesuk, D. Wongratanaphisan, N. Mangkorntong, S. Choopun, Adv. Mater. Res. 55–57, 641–644 (2008)

    Article  Google Scholar 

  29. E.J. Baran, I.L. Botto, Z. Anorg, Allg. Chem. 448, 188–192 (1979)

Download references

Acknowledgements

We wish to thank Thailand’s Office of the Higher Education Commission for providing financial support through the National Research University Project (NRU) for Chiang Mai University (CMU) and the Human Resource Development Project in Science Achievement Scholarship of Thailand, including the Graduate School of CMU through a general support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arin, J., Thongtem, S., Phuruangrat, A. et al. Characterization of ZnO–TiO2 and zinc titanate nanoparticles synthesized by hydrothermal process. Res Chem Intermed 43, 3183–3195 (2017). https://doi.org/10.1007/s11164-016-2818-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2818-y

Keywords

Navigation