Skip to main content
Log in

Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Iron oxide-loaded Cu2O photocatalysts were prepared by a facile hydrothermal method. The binary mixed metal oxide photocatalyst was characterized by XRD, FE-SEM, FTIR, UV–Vis-DRS, particle size and zeta potential measurements. XRD analysis showed that Fe2O3/Cu2O catalysts were phase pure and highly crystalline in nature. FE-SEM images revealed the formation of nanospherical Fe2O3 over the Cu2O surface during hydrothermal reaction. From UV–Vis diffuse reflectance spectroscopy studies, the optical band gap of the Fe2O3/Cu2O photocatalyst was found to be slightly red-shifted to 1.85 eV, after loading of Fe2O3. The zeta potential analysis revealed that the surface of the Fe2O3/Cu2O photocatalyst was negatively charged in neutral solution. The loading of n-type Fe2O3 on p-type Cu2O augments the charge carrier separation at the interface, which was evident from the enhanced photodegradation of organic pollutants (Methylene blue and Rhodamine B dyes) under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Elena, G. Rus, J.G. Martinez, Renew. Sustainable Energy Rev. 13(9), 2373–2384 (2009)

    Article  Google Scholar 

  2. P.V. Kamat, J. Phys. Chem. C 111(7), 2834–2860 (2007)

    Article  CAS  Google Scholar 

  3. C. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014)

    Article  CAS  Google Scholar 

  4. H. Park, H.S. Jie, B. Neppolian, K. Tsujimaru, J.P. Ahn, D.Y. Lee, J.K. Park, M. Anpo, Top. Catal. 47, 3–4 (2008)

    Article  Google Scholar 

  5. B. Neppolian, Y. Hiromi, Y. Okada, H. Nishijima, M. Anpo, Catal. Lett. 105(1), 264–271 (2005)

    Google Scholar 

  6. Y. Hiromi, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Catal. Today 84, 3 (2003)

    Article  Google Scholar 

  7. B. Neppolian, Q. Wang, H. Yamashita, H. Choi, Appl Catal A Gen. 333, 2 (2007)

    Article  Google Scholar 

  8. W. Ren, A. Zhihui, F. Jia, L. Zhang, X. Fan, Z. Zou, Appl Catal B: environ. 69(15), 138–144 (2007)

    Article  CAS  Google Scholar 

  9. H. Seema, K.C. Kemp, V. Chandra, K.S. Kim, Nanotechnology 23(35), 355–705 (2012)

    Article  Google Scholar 

  10. P. Mirtchev, K. Liao, E. Jaluague, Q. Qiao, Y. Tian, M. Varela, K.S. Burch, S.J. Pennycook, D.D. Perovicg, G. Ozin, J. Mater. Chem. A 2, 8525–8533 (2014)

    Article  CAS  Google Scholar 

  11. Q. Tian, W. Wu, L. Sun, S. Yang, M. Lei, J. Zhou, Y. Liu, X. Xiao, F. Ren, C. Jiang, V.A.L. Roy, A.C.S. Appl, Mater. Inter. 6(15), 13088–13097 (2014)

    Article  CAS  Google Scholar 

  12. S.G. Babu, R. Vinoth, P.S. Narayana, D. Bahnemann, B. Neppolian, APL Mater. 3(10), 104415 (2015)

    Article  Google Scholar 

  13. C. Xu, L. Cao, G. Su, W. Liu, H. Liu, Y. Yu, X. Qu, J. Hazard. Mater. 176(1), 807–813 (2010)

    Article  CAS  Google Scholar 

  14. L. Xua, H. Xua, S. Wua, X. Zhang, Appl. Surf. Sci. 258(11), 4934–4938 (2012)

    Article  Google Scholar 

  15. X. Liu, L. Cao, W. Sun, Z. Zhou, J. Yang, Res Chem Intermediat 42(7), 6289–6300 (2016)

    Article  CAS  Google Scholar 

  16. N. Li, M. Liu, Z. Zhou, J. Zhou, Y. Sun, L. Guo, Nanoscale 6(16), 9695–9702 (2014)

    Article  CAS  Google Scholar 

  17. J.J. Sen, G. Lian, Y.X. Long, G.J. Kun, J. Acta Phys. 16(04), 312–316 (2000)

    Google Scholar 

  18. X. Zhang, Y. Niu, X. Meng, Y. Li, J. Zhao, CrystEngComm 15, 8166–8172 (2013)

    Article  CAS  Google Scholar 

  19. T.K. Townsend, E.M. Sabio, N.D. Browning, F.E. Osterloh, Energy Environ. Sci. 4, 4270 (2011)

    Article  CAS  Google Scholar 

  20. J.H. Kennedy, K.W. Frese, J. Electrochem. Soc. 124, 130 (1977)

    Article  Google Scholar 

  21. K.L. Hardee, A.J. Bard, J. Electrochem. Soc. 123, 1024–1026 (1976)

    Article  CAS  Google Scholar 

  22. A.G. Joly, J.R. Williams, S.A. Chambers, G. Xiong, W.P. Hess, D.M. Laman, J. Appl. Phys. 6, 99 (2006)

    Google Scholar 

  23. N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H.M. Deng, J.Z. Zhang, J. Phys. Chem. B 102, 770–776 (1998)

    Article  CAS  Google Scholar 

  24. A.J. Bosman, H.J. Vandaal, Adv. Phys. 19, 1–7 (1970)

    Article  CAS  Google Scholar 

  25. Q. Hua, D. Shang, W. Zhang, K. Chen, S. Chang, Y. Ma, Z. Jiang, J. Yang, W. Huang, Langmuir 27(2), 665–671 (2011)

    Article  CAS  Google Scholar 

  26. K. Sivula, R. Zboril, F.L. Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Gratzel, J. Am. Chem. Soc. 132, 7436–7444 (2010)

    Article  CAS  Google Scholar 

  27. B. De, B. Voit, N. Karak, RSC Adv. 4(102), 58453–58459 (2014)

    Article  CAS  Google Scholar 

  28. Q. Hua, T. Cao, H. Bao, Z. Jiang, W. Huang, Chemsuschem 6(10), 1966–1972 (2013)

    Article  CAS  Google Scholar 

  29. C. Hao, F. Feng, X. Wang, M. Zhou, Y. Zhao, C.W. Gec, K. Wang, RSC Adv. 5, 21161–21169 (2015)

    Article  CAS  Google Scholar 

  30. S. Manoranjan, P. Biswas, Nanoscale Res. Lett. 6(1), 441 (2011)

    Article  Google Scholar 

  31. M. Guedes, J.M.F. Ferreira, A.C. Ferro, Ceram. Int. 35(5), 1939–1945 (2009)

    Article  CAS  Google Scholar 

  32. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, phys. status solidi (b) 252(8), 1700–1710 (2015)

  33. S. Norio, Electrochemistry at metal and semiconductor electrodes (Elsevier, Amsterdam, 1998)

    Google Scholar 

  34. N. Niklas, H. Fedderwitz, B. Groß, C. Noguera, J. Goniakowski, PCCP 18(9), 6729–6733 (2016)

    Article  Google Scholar 

  35. R.H. Goncalves, B.H.R. Lima, E.R. Leite, J. Am. Chem. Soc. 133, 6012–6019 (2011)

    Article  CAS  Google Scholar 

  36. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr., Phys. Rev. Lett. 49(23), 1691 (1982)

    Article  CAS  Google Scholar 

  37. Y. Xu, M.A.A. Schoonen, Am. Miner. 85, 543–556 (2000)

    Article  CAS  Google Scholar 

  38. S.K. Lakhera, A. Watts, H.Y. Hafeez, B. Neppolian, Catal. Today (2017). doi:10.1016/j.cattod.2017.03.020

    Google Scholar 

  39. M.S. Lundstrom, R.J. Schuelke, Solid State Electron. 25(8), 683–691 (1982)

    Article  CAS  Google Scholar 

  40. O.D. Scanlon, G.W. Watson, J. Phys. Chem. Lett. 1, 17 (2010)

    Google Scholar 

  41. Y.K. Hsu, C.H. Yu, Y.C. Chen, Y.G. Lin, RSC Adv. 2–32, 12455–12459 (2012)

    Article  Google Scholar 

  42. L.C. Olsen, F.W. Addis, W. Miller, Sol. Cells 7, 247–279 (1982–1983)

Download references

Acknowledgement

We gratefully acknowledge financial support from Ministry of New and Renewable Energy (MNRE), New Delhi, India (103/239/2015-NT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernaurdshaw Neppolian.

Additional information

Special Issue of the 1st International Symposium on Photocatalysis at Fuzhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhera, S.K., Venkataramana, R., Watts, A. et al. Facile synthesis of Fe2O3/Cu2O nanocomposite and its visible light photocatalytic activity for the degradation of cationic dyes. Res Chem Intermed 43, 5091–5102 (2017). https://doi.org/10.1007/s11164-017-3050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3050-0

Keywords

Navigation