Skip to main content
Log in

Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

CeO2, Sm and Gd doped CeO2 were synthesized using the hydrothermal route. The influence of synthesis conditions on the crystal structure, particle size and microstructure was investigated. The prepared nanoparticles were characterized using X-ray powder diffraction, FT-Raman spectroscopy, transmission electron microscopy and scanning electron microscopy. The photo-catalytic degradation of methylene blue was examined under UV light using the prepared nanoparticles at different conditions (pH, dye concentration, catalyst dosage). The photo-catalytic activity of CeO2 was kinetically enhanced by trivalent cations (Gd+3 and Sm+3) doping. The results displayed the excellent catalytic activity of the Gd doped CeO2 as compared to that Sm doped CeO2 and the undoped one. The degradation pathways of MB were followed using liquid chromatography/mass spectroscopy (LC/MS), it was found that MB was degraded completely into safe byproducts. The total organic carbon content measurements confirmed the results obtained by LC/MS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme. 1

Similar content being viewed by others

References

  1. Z.R. Ismagilov, E.V. Matus, L.T. Tsikoza, Energy Environ. Sci. 1, 5 (2008)

    Article  Google Scholar 

  2. D. Delimaris, T. Ioannides, Appl. Catal. B 89, 1 (2009)

    Article  Google Scholar 

  3. W. El Rouby, A. Farghali, A. Hamdedein, Water Sci. Technol. 74, 10 (2016)

    Article  Google Scholar 

  4. O.W.J. Kotov, P. Clements Isaac, Adv. Mater. 21, 3970–4004 (2009)

    Article  CAS  Google Scholar 

  5. S. Yabe, T. Sato, J. Solid State Chem. 171, 7–11 (2003)

    Article  CAS  Google Scholar 

  6. G. Hao, X. Liu, H. Wang, H. Be, L. Pei, W. Su, Solid State Ion. 225, 0 (2012)

    Article  CAS  Google Scholar 

  7. N. Izu, W. Shin, N. Murayama, Sens. Actuators B Chem 93, 1–3 (2003)

    Article  Google Scholar 

  8. Q. Cui, X. Dong, J. Wang, M. Li, J. Rare Earth 26, 5 (2008)

    Article  Google Scholar 

  9. A.A. Aboud, H. Al-Kelesh, W.M. El Rouby, A.A. Farghali, A. Hamdedein, M.H. Khedr, J. Mater. Res. Technol. (2017). doi:10.1016/j.jmrt.2017.03.003

    Google Scholar 

  10. Y. Zhai, S. Zhang, H. Pang, Mater. Lett. 61, 8–9 (2007)

    Google Scholar 

  11. M. García-Melchor, N. López, J. Phys. Chem. C 118, 20 (2014)

    Article  Google Scholar 

  12. M. García-Melchor, N. López, J. Phys. Chem. C 118, 20 (2014)

    Article  Google Scholar 

  13. K. Kaneko, K. Inoke, B. Freitag, A.B. Hungria, P.A. Midgley, T.W. Hansen, J. Zhang, S. Ohara, T. Adschiri, Nano Lett. 7, 2 (2007)

    Article  Google Scholar 

  14. D.V. Pinjari, A.B. Pandit, Ultrason. Sonochem. 18, 5 (2011)

    Article  Google Scholar 

  15. L. Mädler, W.J. Stark, S.E. Pratsinis, J. Mater. Res. 17, 06 (2002)

    Article  Google Scholar 

  16. X. Gao, Y. Jiang, Y. Zhong, Z. Luo, K. Cen, J. Hazard. Mater. 174, 1–3 (2010)

    Article  Google Scholar 

  17. M.T. Uddin, M.A. Islam, S. Mahmud, M. Rukanuzzaman, J. Hazard. Mater. 164, 1 (2009)

    Article  Google Scholar 

  18. M.I. Litter, M.E. Morgada, J. Bundschuh, Environ. Pollut. 158, 5 (2010)

    Article  Google Scholar 

  19. S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Sci. Total Environ. 409, 15 (2011)

    Article  Google Scholar 

  20. C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, J. Colloid Interface Sci. 332, 1 (2009)

    Article  Google Scholar 

  21. P. Waranusantigul, P. Pokethitiyook, M. Kruatrachue, E.S. Upatham, Environ. Pollut. 125, 3 (2003)

    Article  Google Scholar 

  22. F.A. Pavan, A.C. Mazzocato, Y. Gushikem, Bioresour. Technol. 99, 8 (2008)

    Article  Google Scholar 

  23. M.-H. Oh, J.-S. Nho, S.-B. Cho, J.-S. Lee, R.K. Singh, Mater. Chem. Phys. 124, 1 (2010)

    Article  Google Scholar 

  24. C. Levy, C. Guizard, A. Julbe, J. Am. Ceram. Soc. 90, 3 (2007)

    Article  Google Scholar 

  25. A. Bonamartini Corradi, F. Bondioli, A.M. Ferrari, T. Manfredini, Mater. Res. Bull. 41, 1 (2006)

    Article  Google Scholar 

  26. S. Dikmen, J. Alloys Compd. 491, 1–2 (2010)

    Article  Google Scholar 

  27. F. Zhang, S.-W. Chan, J.E. Spanier, E. Apak, Q. Jin, R.D. Robinson, I.P. Herman, Appl. Phys. Lett. 80, 1 (2002)

    Article  Google Scholar 

  28. G. Li, R.L. Smith, H. Inomata, J. Am. Chem. Soc. 123, 44 (2001)

    Google Scholar 

  29. P. Singh, M.S. Hegde, Chem. Mater. 22, 3 (2009)

    Google Scholar 

  30. I. Kosacki, T. Suzuki, H.U. Anderson, P. Colomban, Solid State Ion. 149, 1–2 (2002)

    Article  Google Scholar 

  31. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S. Sing, Pure Appl. Chem. 87, 9–10 (2015)

    Article  Google Scholar 

  32. H.-H. Ko, G. Yang, M.-C. Wang, X. Zhao, Ceram. Int. 40, 5 (2014)

    Google Scholar 

  33. S. Maensiri, C. Masingboon, P. Laokul, W. Jareonboon, V. Promarak, P.L. Anderson, S. Seraphin, Cryst. Growth Des. 7, 5 (2007)

    Article  Google Scholar 

  34. M. Taguchi, S. Takami, T. Adschiri, T. Nakane, K. Sato, T. Naka, CrystEngComm 13, 8 (2011)

    Article  Google Scholar 

  35. S. Tsunekawa, T. Fukuda, A. Kasuya, J. Appl. Phys. 87, 3 (2000)

    Article  Google Scholar 

  36. P. Patsalas, S. Logothetidis, C. Metaxa, Appl. Phys. Lett. 81, 3 (2002)

    Article  Google Scholar 

  37. A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B Environ. 31, 2 (2001)

    Article  Google Scholar 

  38. K. Tanaka, K. Padermpole, T. Hisanaga, Water Res. 34, 1 (2000)

    Article  Google Scholar 

  39. G. Dutta, U.V. Waghmare, T. Baidya, M.S. Hegde, K.R. Priolkar, P.R. Sarode, Chem. Mater. 18, 14 (2006)

    Google Scholar 

  40. N. Sabari Arul, D. Mangalaraj, P.C. Chen, N. Ponpandian, C. Viswanathan, Mater. Lett. 65, 21–22 (2011)

    Article  Google Scholar 

  41. A. Messerer, R. Niessner, U. Pöschl, Carbon 44, 2 (2006)

    Article  Google Scholar 

  42. M. Pera-Titus, V. Garcı́a-Molina, M.A. Baños, J. Giménez, S. Esplugas, Appl. Catal. B Environ. 47, 4 (2004)

    Article  Google Scholar 

  43. R. Andreozzi, V. Caprio, A. Insola, R. Marotta, Catal. Today 53, 1 (1999)

    Article  Google Scholar 

  44. M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 35, 2 (2009)

    Article  Google Scholar 

  45. D.F. Ollis, Cr Acad Sci Urss 3, 6 (2000)

    Google Scholar 

  46. I. Oller, S. Malato, J.A. Sánchez-Pérez, Sci. Total Environ. 409, 20 (2011)

    Article  Google Scholar 

  47. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 6018 (2011)

    Google Scholar 

  48. J.M. McCord, E.D. Day Jr., FEBS Lett. 86, 1 (1978)

    Article  Google Scholar 

  49. K. Ikehata, M. Gamal El-Din, Ozone Sci. Eng. 27, 2 (2005)

    Google Scholar 

  50. S. Camiolo, P.A. Gale, M.B. Hursthouse, M.E. Light, Org. Biomol. Chem. 1, 4 (2003)

    Article  Google Scholar 

  51. A. Khataee, M.B. Kasiri, J. Mol. Catal. A Chem. 328, 1 (2010)

    Article  Google Scholar 

  52. C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.-M. Herrmann, J. Photochem. Photobiol. A 158, 1 (2003)

    Article  Google Scholar 

  53. G.K.C. Low, S.R. McEvoy, R.W. Matthews, Environ. Sci. Technol. 25, 3 (1991)

    Article  Google Scholar 

  54. P. Calza, E. Pelizzetti, C. Minero, J. Appl. Electrochem. 35, 7–8 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Fund (STDF) in Egypt under the Egypt–US joint Project ID No. 4435. We are grateful to Associate Professor S. I. El-Dek for her help in the lattice parameter discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Farghali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farghali, A.A., El Rouby, W.M.A. & Hamdedein, A. Effect of hydrothermal conditions on microstructures of pure and doped CeO2 nanoparticles and their photo-catalytic activity: degradation mechanism and pathway of methylene blue dye. Res Chem Intermed 43, 7171–7192 (2017). https://doi.org/10.1007/s11164-017-3067-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3067-4

Keywords

Navigation