Skip to main content

Advertisement

Log in

A high-efficiency photocatalyst, flaky anatase@natural rutile composite using one-step microwave hydrothermal synthesis

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A flaky photocatalytic composite of anatase@natural rutile(A@NR) was obtained using one-step microwave hydrothermal synthesis, which was designed to overcome the low photocatalytic efficiency stemming from high electron-hole recombination and a narrow photoresponse range. The characterizations were completely elucidated using X-ray diffraction, field emission scanning electron microscopy, Brunauer Emmett Teller surface area, ultraviolet–visible diffuse reflectance spectroscopy, and photoluminescence spectra. The efficiency of A@NR in photocatalytic degradation of methyl orange was determined to be close to that of P25 under UV light and superior to that of P25 under visible light. The excellent photocatalytic activity results from the synergistic effects of substituting Fe ions, which alter the band structure, and the isomerism of anatase and natural rutile, which separates the photogenerated electron holes. The calculated apparent quantum efficiencies of 32.8 and 12.9% for A@NR, under UV and visible light irradiation, respectively, show a higher catalytic activity and a more effective photoinduced electron-hole separation in A@NR than in P25.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  CAS  Google Scholar 

  2. Y. Wang, Y.M. He, Q.H. Lai, M.H. Fan, J. Environ. Sci. China 26, 2139 (2014)

    Article  Google Scholar 

  3. A. Natoli, A. Cabeza, Á.G. De La Torre, M.A.G. Aranda, I. Santacruz, J. Am. Ceram. Soc. 95, 502 (2012)

    Article  CAS  Google Scholar 

  4. S.D. Kenarsari, M.H. Fan, G.D. Jiang, X.D. Shen, Y.Q. Lin, X. Hu, Energy Fuels 27, 6938 (2013)

    Article  Google Scholar 

  5. L.N. Ma, R.Z. Bai, G.S. Hu, R. Chen, X. Hu, W. Dai, H.F.M. Dacosta, M.H. Fan, Energy Fuels 27, 5433 (2013)

    Article  CAS  Google Scholar 

  6. M. Afshar, A. Badiei, H. Eskandarloo, G.M. Ziarani, Res. Chem. Intermed. 42, 7269 (2016)

    Article  CAS  Google Scholar 

  7. G.M. Wang, H.Y. Wang, Y.C. Ling, Y.C. Tang, X.Y. Yang, R.C. Fitzmorris, C.C. Wang, J.Z. Zhang, Y. Li, Nano Lett. 11, 3026 (2011)

    Article  CAS  Google Scholar 

  8. D. Zhang, G. Li, F. Wang, J.C. Yu, CrystEngComm 12, 1759 (2010)

    Article  CAS  Google Scholar 

  9. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  CAS  Google Scholar 

  10. Y. Yokosuka, K. Oki, H. Nishikiori, Y. Tatsumi, N. Tanaka, T. Fujii, Res. Chem. Intermed. 35, 43 (2009)

    Article  CAS  Google Scholar 

  11. H.P. Ye, S.M. Lu, Appl. Surf. Sci. 270, 741 (2013)

    Article  CAS  Google Scholar 

  12. C. Adán, A. Bahamonde, I. Oller, S. Malato, A. Martínez-Arias, Appl. Catal. B: Environ. 144, 269 (2014)

    Article  Google Scholar 

  13. Y.L. Cheng, M. Zhang, G. Yao, L. Yang, J.J. Tao, Z.Z. Gong, G. He, Z.Q. Sun, J. Alloys Compd. 662, 179 (2016)

    Article  CAS  Google Scholar 

  14. A. Zielińska, E. Kowalska, J.W. Sobczak, I. Łącka, M. Gazda, B. Ohtani, J. Hupka, A. Zaleska, Sep. Purif. Technol. 72, 309 (2010)

    Article  Google Scholar 

  15. A.H. Lu, Y. Li, M. Lv, C.Q. Wang, L. Yang, J. Liu, Y.H. Wang, K.H. Wong, P.K. Wong, Sol. Energy Mat. Sol. C. 91, 1849 (2007)

    Article  CAS  Google Scholar 

  16. Z. Zheng, H. Liu, J. Ye, J. Zhao, J. Mol. Catal. A: Chem. 316, 75 (2010)

    Article  CAS  Google Scholar 

  17. A. Kar, S. Sain, D. Rossouw, B.R. Knappett, S.K. Pradhan, A.E. Wheatley, Nanoscale 8, 2727 (2016)

    Article  CAS  Google Scholar 

  18. L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18, 2180 (2008)

    Article  CAS  Google Scholar 

  19. Y. Li, Y. Hu, S. Peng, G. Lu, S. Li, J. Phys. Chem. C 113, 9352 (2009)

    Article  CAS  Google Scholar 

  20. N.D. Abazovic, M.I. Comor, M.D. Dramicanin, D.J. Jovanovic, S.P. Ahrenkiel, J.M. Nedeljkovic, J. Phys. Chem. B 110, 25366 (2006)

    Article  CAS  Google Scholar 

  21. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)

    Article  CAS  Google Scholar 

  22. C.H. Su, C.C. Hu, Y.C.C. Sun, Y.C. Hsiao, J. Taiwan Inst. Chem. Eng. 59, 229 (2016)

    Article  CAS  Google Scholar 

  23. K. Gurushantha, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, C. Shivakumara, H.P. Nagaswarupa, S.C. Prashantha, M.R. Anilkumar, J. Mol. Catal. A: Chem. 397, 36 (2015)

    Article  CAS  Google Scholar 

  24. N. Zhang, M.Q. Yang, Z.R. Tang, Y.J. Xu, J. Catal. 303, 60 (2013)

    Article  CAS  Google Scholar 

  25. S.Q. Liu, Z. Chen, N. Zhang, Z.R. Tang, Y.J. Xu, J. Phys. Chem. C 117, 8251 (2013)

    Article  CAS  Google Scholar 

  26. B. Weng, S. Liu, N. Zhang, Z.R. Tang, Y.J. Xu, J. Catal. 309, 146 (2014)

    Article  CAS  Google Scholar 

  27. L.W. Zhang, E. Reisner, J.J. Baumberg, Energy Environ. Sci. 7, 1402 (2014)

    Article  CAS  Google Scholar 

  28. X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z.Y. Fan, ACS Appl. Mater. Interfaces. 4, 3944 (2012)

    Article  CAS  Google Scholar 

  29. M. Liu, R. Inde, M. Nishikawa, X.Q. Qiu, D. Atarashi, E. Sakai, Y. Nosaka, K. Hashimoto, M. Miyauchi, ACS Nano 8, 7229 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Basic Research Program of China (973 Program: 2014CB846003) and Scientific Research Fund of Sichuan Provincial Education Department (17ZB0448). The author would also like to thank Dr. Patrick Diehl for his help in revising and polishing this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faqin Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 338 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Dong, F., Zhang, J. et al. A high-efficiency photocatalyst, flaky anatase@natural rutile composite using one-step microwave hydrothermal synthesis. Res Chem Intermed 44, 705–720 (2018). https://doi.org/10.1007/s11164-017-3129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3129-7

Keywords

Navigation